These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28934684)

  • 1. Scientific evidence for the identification of an Aboriginal massacre at the Sturt Creek sites on the Kimberley frontier of north-western Australia.
    Smith PA; Raven MD; Walshe K; Fitzpatrick RW; Pate FD
    Forensic Sci Int; 2017 Oct; 279():258-267. PubMed ID: 28934684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the human origin of fragments of burnt bone: a comparative study of histological, immunological and DNA techniques.
    Cattaneo C; DiMartino S; Scali S; Craig OE; Grandi M; Sokol RJ
    Forensic Sci Int; 1999 Jun; 102(2-3):181-91. PubMed ID: 10464934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of osteological remains submitted for forensic examination in south Australia over a 7-year period (2013-2019).
    Simpson E; Byard RW
    J Forensic Leg Med; 2020 Nov; 76():102074. PubMed ID: 33129197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating temperature exposure of burnt bone - A methodological review.
    Ellingham ST; Thompson TJ; Islam M; Taylor G
    Sci Justice; 2015 May; 55(3):181-8. PubMed ID: 25934370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling massacres. The agent-based modelling of catastrophic events using skeletal data from archaeological excavations.
    Duering A
    Anthropol Anz; 2019 Sep; 76(3):217-221. PubMed ID: 30865766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sharp and blunt force trauma concealment by thermal alteration in homicides: An in-vitro experiment for methodology and protocol development in forensic anthropological analysis of burnt bones.
    Macoveciuc I; Márquez-Grant N; Horsfall I; Zioupos P
    Forensic Sci Int; 2017 Jun; 275():260-271. PubMed ID: 28414985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of X-ray diffraction in the analysis of burned remains from forensic contexts.
    Piga G; Thompson TJ; Malgosa A; Enzo S
    J Forensic Sci; 2009 May; 54(3):534-9. PubMed ID: 19368627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining Volumetric Shrinkage Trends of Burnt Bone Using Micro-CT.
    Ellingham S; A Sandholzer M
    J Forensic Sci; 2020 Jan; 65(1):196-199. PubMed ID: 31397893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone mineral change during experimental calcination: an X-ray diffraction study.
    Galeano S; García-Lorenzo ML
    J Forensic Sci; 2014 Nov; 59(6):1602-6. PubMed ID: 24962811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of an anthropological scene of crime investigation in the case of burnt remains in vehicles: 3 case studies.
    Porta D; Poppa P; Regazzola V; Gibelli D; Schillaci DR; Amadasi A; Magli F; Cattaneo C
    Am J Forensic Med Pathol; 2013 Sep; 34(3):195-200. PubMed ID: 23629387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of human skeletal elements from a recent UK murder inquiry: preservational signatures.
    Cox M; Bell L
    J Forensic Sci; 1999 Sep; 44(5):945-50. PubMed ID: 10486946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of crystal structure in fresh, burned and archaic bone - Implications for forensic sampling.
    Mckinnon M; Henneberg M; Simpson E; Higgins D
    Forensic Sci Int; 2020 Aug; 313():110328. PubMed ID: 32502739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone mineral change during experimental heating: an X-ray scattering investigation.
    Hiller JC; Thompson TJ; Evison MP; Chamberlain AT; Wess TJ
    Biomaterials; 2003 Dec; 24(28):5091-7. PubMed ID: 14568425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone mineral density and survival of elements and element portions in the bones of the Crow Creek massacre victims.
    Willey P; Galloway A; Snyder L
    Am J Phys Anthropol; 1997 Dec; 104(4):513-28. PubMed ID: 9453699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of structural changes in modern and archaeological burnt bone: Implications for differential preservation bias.
    Gallo G; Fyhrie M; Paine C; Ushakov SV; Izuho M; Gunchinsuren B; Zwyns N; Navrotsky A
    PLoS One; 2021; 16(7):e0254529. PubMed ID: 34320009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomical reconstruction of fragments of burned human bones: a necessary means for forensic identification.
    Grévin G; Bailet P; Quatrehomme G; Ollier A
    Forensic Sci Int; 1998 Sep; 96(2-3):129-34. PubMed ID: 9854830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Interindividual variability, pathological changes and decomposition as an impediment to the morphological determination of human specificity of bone finds].
    Verhoff MA; Rensing N; Kreutz K; Dierkes C; Ramsthaler F
    Arch Kriminol; 2008; 221(3-4):99-112. PubMed ID: 18522380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Aluminum Foil Packaging on Elemental Analysis of Bone.
    Lewis L; Christensen AM
    J Forensic Sci; 2016 Mar; 61(2):439-441. PubMed ID: 27404616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of various methods of DNA isolation from bones and teeth of animals exposed to high temperature.
    Grela M; Jakubczak A; Kowalczyk M; Listos P; Gryzińska M
    J Forensic Leg Med; 2021 Feb; 78():102131. PubMed ID: 33561692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are we using the appropriate reference samples to develop juvenile age estimation methods based on bone size? An exploration of growth differences between average children and those who become victims of homicide.
    Spake L; Cardoso HFV
    Forensic Sci Int; 2018 Jan; 282():1-12. PubMed ID: 29136574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.