These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 28934913)
1. Flavonoid compounds related to seed coat color of wheat. Kohyama N; Chono M; Nakagawa H; Matsuo Y; Ono H; Matsunaka H Biosci Biotechnol Biochem; 2017 Nov; 81(11):2112-2118. PubMed ID: 28934913 [TBL] [Abstract][Full Text] [Related]
2. Phenolic compounds contribute to dark bran pigmentation in hard white wheat. Matus-Cádiz MA; Daskalchuk TE; Verma B; Puttick D; Chibbar RN; Gray GR; Perron CE; Tyler RT; Hucl P J Agric Food Chem; 2008 Mar; 56(5):1644-53. PubMed ID: 18254596 [TBL] [Abstract][Full Text] [Related]
3. Identification of two anthocyanidin reductase genes and three red-brown soybean accessions with reduced anthocyanidin reductase 1 mRNA, activity, and seed coat proanthocyanidin amounts. Kovinich N; Saleem A; Arnason JT; Miki B J Agric Food Chem; 2012 Jan; 60(2):574-84. PubMed ID: 22107112 [TBL] [Abstract][Full Text] [Related]
4. TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway. Gonzalez A; Brown M; Hatlestad G; Akhavan N; Smith T; Hembd A; Moore J; Montes D; Mosley T; Resendez J; Nguyen H; Wilson L; Campbell A; Sudarshan D; Lloyd A Dev Biol; 2016 Nov; 419(1):54-63. PubMed ID: 27046632 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of Color Development in Seeds of Brown- and Yellow-Seeded Heading Chinese Cabbage and Molecular Analysis of Ren Y; He Q; Ma X; Zhang L Front Plant Sci; 2017; 8():1410. PubMed ID: 28855913 [TBL] [Abstract][Full Text] [Related]
6. BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Albert S; Delseny M; Devic M Plant J; 1997 Feb; 11(2):289-99. PubMed ID: 9076994 [TBL] [Abstract][Full Text] [Related]
7. Comparative investigation of seed coats of brown- versus yellow-colored soybean seeds using an integrated proteomics and metabolomics approach. Gupta R; Min CW; Kim SW; Wang Y; Agrawal GK; Rakwal R; Kim SG; Lee BW; Ko JM; Baek IY; Bae DW; Kim ST Proteomics; 2015 May; 15(10):1706-16. PubMed ID: 25545850 [TBL] [Abstract][Full Text] [Related]
8. Metabolic characteristics of self-pollinated wheat seed under red and blue light during early development. Zhang P; Tang Y; Liu Y; Liu J; Wang Q; Wang H; Li H; Li L; Qin P Planta; 2023 Aug; 258(3):63. PubMed ID: 37543957 [TBL] [Abstract][Full Text] [Related]
10. TRANSPARENT TESTA1 interacts with R2R3-MYB factors and affects early and late steps of flavonoid biosynthesis in the endothelium of Arabidopsis thaliana seeds. Appelhagen I; Lu GH; Huep G; Schmelzer E; Weisshaar B; Sagasser M Plant J; 2011 Aug; 67(3):406-19. PubMed ID: 21477081 [TBL] [Abstract][Full Text] [Related]
12. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus. Wang F; He J; Shi J; Zheng T; Xu F; Wu G; Liu R; Liu S G3 (Bethesda); 2016 Apr; 6(4):1073-81. PubMed ID: 26896439 [TBL] [Abstract][Full Text] [Related]
13. Characterization of tt15, a novel transparent testa mutant of Arabidopsis thaliana (L.) Heynh. Focks N; Sagasser M; Weisshaar B; Benning C Planta; 1999 May; 208(3):352-7. PubMed ID: 10384728 [TBL] [Abstract][Full Text] [Related]
14. Accumulation of proanthocyanidins and/or lignin deposition in buff-pigmented soybean seed coats may lead to frequent defective cracking. Senda M; Yamaguchi N; Hiraoka M; Kawada S; Iiyoshi R; Yamashita K; Sonoki T; Maeda H; Kawasaki M Planta; 2017 Mar; 245(3):659-670. PubMed ID: 27995313 [TBL] [Abstract][Full Text] [Related]
15. Changes in polyphenols of the seed coat during the after-darkening process in pinto beans (Phaseolus vulgaris L.). Beninger CW; Gu L; Prior RL; Junk DC; Vandenberg A; Bett KE J Agric Food Chem; 2005 Oct; 53(20):7777-82. PubMed ID: 16190630 [TBL] [Abstract][Full Text] [Related]
16. Structural characterization of proanthocyanidins from adzuki seed coat. Kawakami W; Oshima A; Yanase E Food Chem; 2018 Jan; 239():1110-1116. PubMed ID: 28873529 [TBL] [Abstract][Full Text] [Related]
17. Multiomics Analyses Reveal the Dual Role of Flavonoids in Pigmentation and Abiotic Stress Tolerance of Soybean Seeds. Jiang L; Yang X; Gao X; Yang H; Ma S; Huang S; Zhu J; Zhou H; Li X; Gu X; Zhou H; Liang Z; Yang A; Huang Y; Xiao M J Agric Food Chem; 2024 Feb; 72(6):3231-3243. PubMed ID: 38303105 [TBL] [Abstract][Full Text] [Related]
18. [Pseudogermin activity during maturation and germination of wheat seeds]. Liu EE; Guo ZF Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Dec; 30(6):671-4. PubMed ID: 15643088 [TBL] [Abstract][Full Text] [Related]
19. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Pourcel L; Routaboul JM; Kerhoas L; Caboche M; Lepiniec L; Debeaujon I Plant Cell; 2005 Nov; 17(11):2966-80. PubMed ID: 16243908 [TBL] [Abstract][Full Text] [Related]
20. A new dominant Arabidopsis transparent testa mutant, sk21-D, and modulation of seed flavonoid biosynthesis by KAN4. Gao P; Li X; Cui D; Wu L; Parkin I; Gruber MY Plant Biotechnol J; 2010 Dec; 8(9):979-93. PubMed ID: 20444210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]