These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Treatment of malar and midfacial fractures with osteoconductive forged unsintered hydroxyapatite and poly-L-lactide composite internal fixation devices. Landes C; Ballon A; Ghanaati S; Tran A; Sader R J Oral Maxillofac Surg; 2014 Jul; 72(7):1328-38. PubMed ID: 24704037 [TBL] [Abstract][Full Text] [Related]
23. [DIGITAL DESIGN OF STANDARD PARTS DATABASE FOR PROXIMAL TIBIA FRACTURES TREATED WITH PLATING VIA THREE-DIMENSIONAL PRINTING]. Chen X; Zhang G; Lin H; Lu J; Huang W; Yu Z; Chen X; Wu X; Wu C Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Jun; 29(6):704-11. PubMed ID: 26466472 [TBL] [Abstract][Full Text] [Related]
24. [Internal fixation surgery planning for complex tibial plateau fracture based on digital design and 3D printing]. Huang H; Zhang G; Ouyang H; Yang Y; Wu Z; Xu J; Xie P; Huang W Nan Fang Yi Ke Da Xue Xue Bao; 2015 Feb; 35(2):218-22. PubMed ID: 25736116 [TBL] [Abstract][Full Text] [Related]
25. Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity. Yu J; Xu Y; Li S; Seifert GV; Becker ML Biomacromolecules; 2017 Dec; 18(12):4171-4183. PubMed ID: 29020441 [TBL] [Abstract][Full Text] [Related]
26. Performance test of Nano-HA/PLLA composites for interface fixation. Zhu W; Huang J; Lu W; Sun Q; Peng L; Fen W; Li H; Ou Y; Liu H; Wang D; Zeng Y Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):331-5. PubMed ID: 23957645 [TBL] [Abstract][Full Text] [Related]
27. Application of computer-aided design and 3D-printed navigation template in Locking Compression Pediatric Hip Plate Zheng P; Yao Q; Xu P; Wang L Int J Comput Assist Radiol Surg; 2017 May; 12(5):865-871. PubMed ID: 28190127 [TBL] [Abstract][Full Text] [Related]
28. The Possibility of Interlocking Nail Fabrication from FFF 3D Printing PLA/PCL/HA Composites Coated by Local Silk Fibroin for Canine Bone Fracture Treatment. Pitjamit S; Thunsiri K; Nakkiew W; Wongwichai T; Pothacharoen P; Wattanutchariya W Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32231063 [TBL] [Abstract][Full Text] [Related]
29. 3D printed poly(ε-caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects. Buyuksungur S; Endogan Tanir T; Buyuksungur A; Bektas EI; Torun Kose G; Yucel D; Beyzadeoglu T; Cetinkaya E; Yenigun C; Tönük E; Hasirci V; Hasirci N Biomater Sci; 2017 Sep; 5(10):2144-2158. PubMed ID: 28880313 [TBL] [Abstract][Full Text] [Related]
30. Individualized 3D printed model-assisted posterior screw fixation for the treatment of craniovertebral junction abnormality: a retrospective study. Gao F; Wang Q; Liu C; Xiong B; Luo T J Neurosurg Spine; 2017 Jul; 27(1):29-34. PubMed ID: 28475021 [TBL] [Abstract][Full Text] [Related]
31. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI; Cahill PA; Stokes J; McGuinness GB J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394 [TBL] [Abstract][Full Text] [Related]
32. Development of bone screw using novel biodegradable composite orthopedic biomaterial: from material design to in vitro biomechanical and in vivo biocompatibility evaluation. Suryavanshi A; Khanna K; Sindhu KR; Bellare J; Srivastava R Biomed Mater; 2019 Jul; 14(4):045020. PubMed ID: 30952154 [TBL] [Abstract][Full Text] [Related]
33. A combination of three-dimensional printing and computer-assisted virtual surgical procedure for preoperative planning of acetabular fracture reduction. Zeng C; Xing W; Wu Z; Huang H; Huang W Injury; 2016 Oct; 47(10):2223-2227. PubMed ID: 27372187 [TBL] [Abstract][Full Text] [Related]
34. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]
35. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering. Gao Y; Shao W; Qian W; He J; Zhou Y; Qi K; Wang L; Cui S; Wang R Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():195-207. PubMed ID: 29519429 [TBL] [Abstract][Full Text] [Related]
36. 3D Printability of Silk/Hydroxyapatite Composites for Microprosthetic Applications. Milazzo M; Fitzpatrick V; Owens CE; Carraretto IM; McKinley GH; Kaplan DL; Buehler MJ ACS Biomater Sci Eng; 2023 Mar; 9(3):1285-1295. PubMed ID: 36857509 [TBL] [Abstract][Full Text] [Related]
37. Properties of poly(lactic acid)/hydroxyapatite composite through the use of epoxy functional compatibilizers for biomedical application. Monmaturapoj N; Srion A; Chalermkarnon P; Buchatip S; Petchsuk A; Noppakunmongkolchai W; Mai-Ngam K J Biomater Appl; 2017 Aug; 32(2):175-190. PubMed ID: 28618978 [TBL] [Abstract][Full Text] [Related]
38. A computer study of biodegradable plates for internal fixation of mandibular angle fractures. Tams J; Van Loon JP; Otten B; Bos RR J Oral Maxillofac Surg; 2001 Apr; 59(4):404-7; discussion 407-8. PubMed ID: 11289171 [TBL] [Abstract][Full Text] [Related]
39. Preparation and characterization of a porous scaffold based on poly(D,L-lactide) and N-hydroxyapatite by phase separation. Wang XH; Shi S; Guo G; Fu SZ; Fan M; Luo F; Zhao X; Wei YQ; Qian ZY J Biomater Sci Polym Ed; 2011; 22(14):1917-29. PubMed ID: 20961495 [TBL] [Abstract][Full Text] [Related]
40. Application of 3D printing and framework internal fixation technology for high complex rib fractures. Zhou X; Zhang D; Xie Z; Yang Y; Chen M; Liang Z; Zhang G; Li S J Cardiothorac Surg; 2021 Feb; 16(1):5. PubMed ID: 33583412 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]