BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 28935133)

  • 1. Functional Validation of Heteromeric Kainate Receptor Models.
    Paramo T; Brown PMGE; Musgaard M; Bowie D; Biggin PC
    Biophys J; 2017 Nov; 113(10):2173-2177. PubMed ID: 28935133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Conformational Variability in the GluK2 Kainate Receptor Ligand-Binding Domain.
    Wied TJ; Chin AC; Lau AY
    Structure; 2019 Jan; 27(1):189-195.e2. PubMed ID: 30482727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kainate receptor channel opening and gating mechanism.
    Gangwar SP; Yelshanskaya MV; Nadezhdin KD; Yen LY; Newton TP; Aktolun M; Kurnikova MG; Sobolevsky AI
    Nature; 2024 Jun; 630(8017):762-768. PubMed ID: 38778115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate binding and conformational flexibility of ligand-binding domains are critical early determinants of efficient kainate receptor biogenesis.
    Gill MB; Vivithanaporn P; Swanson GT
    J Biol Chem; 2009 May; 284(21):14503-12. PubMed ID: 19342380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial agonism in heteromeric GLUK2/GLUK5 kainate receptor.
    Paudyal N; Das A; Carrillo E; Berka V; Jayaraman V
    Proteins; 2023 Aug; ():. PubMed ID: 37526035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The positive allosteric modulator BPAM344 and L-glutamate introduce an active-like structure of the ligand-binding domain of GluK2.
    Bay Y; Egeberg Jeppesen M; Frydenvang K; Francotte P; Pirotte B; Pickering DS; Kristensen AS; Kastrup JS
    FEBS Lett; 2024 Apr; 598(7):743-757. PubMed ID: 38369668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-molecule positive allosteric modulation of homomeric kainate receptors GluK1-3: development of screening assays and insight into GluK3 structure.
    Bay Y; Venskutonytė R; Frantsen SM; Thorsen TS; Musgaard M; Frydenvang K; Francotte P; Pirotte B; Biggin PC; Kristensen AS; Boesen T; Pickering DS; Gajhede M; Kastrup JS
    FEBS J; 2024 Apr; 291(7):1506-1529. PubMed ID: 38145505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive and negative allosteric modulation of GluK2 kainate receptors by BPAM344 and antiepileptic perampanel.
    Gangwar SP; Yen LY; Yelshanskaya MV; Sobolevsky AI
    Cell Rep; 2023 Feb; 42(2):112124. PubMed ID: 36857176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural dynamics of GluK2 kainate receptors in apo and partial agonist bound states.
    Bogdanović N; Segura-Covarrubias G; Zhang L; Tajima N
    Res Sq; 2023 Dec; ():. PubMed ID: 38076992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kainate receptor GluK2 mediates cold sensing in mice.
    Cai W; Zhang W; Zheng Q; Hor CC; Pan T; Fatima M; Dong X; Duan B; Xu XZS
    Nat Neurosci; 2024 Apr; 27(4):679-688. PubMed ID: 38467901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Arrangement Produced by Concanavalin A Binding to Homomeric GluK2 Receptors.
    Gonzalez CU; Carrillo E; Berka V; Jayaraman V
    Membranes (Basel); 2021 Aug; 11(8):. PubMed ID: 34436376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architecture and structural dynamics of the heteromeric GluK2/K5 kainate receptor.
    Khanra N; Brown PM; Perozzo AM; Bowie D; Meyerson JR
    Elife; 2021 Mar; 10():. PubMed ID: 33724189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hodgkin-Huxley-Katz Prize Lecture: Genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif.
    Perszyk RE; Myers SJ; Yuan H; Gibb AJ; Furukawa H; Sobolevsky AI; Traynelis SF
    J Physiol; 2020 Aug; 598(15):3071-3083. PubMed ID: 32468591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damaging coding variants within kainate receptor channel genes are enriched in individuals with schizophrenia, autism and intellectual disabilities.
    Koromina M; Flitton M; Blockley A; Mellor IR; Knight HM
    Sci Rep; 2019 Dec; 9(1):19215. PubMed ID: 31844109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural arrangement and dynamics of the heteromeric GluK2/GluK5 kainate receptor as determined by smFRET.
    Litwin DB; Paudyal N; Carrillo E; Berka V; Jayaraman V
    Biochim Biophys Acta Biomembr; 2020 Jan; 1862(1):183001. PubMed ID: 31194959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structural arrangement at intersubunit interfaces in homomeric kainate receptors.
    Litwin DB; Carrillo E; Shaikh SA; Berka V; Jayaraman V
    Sci Rep; 2019 May; 9(1):6969. PubMed ID: 31061516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly and Trafficking of Homomeric and Heteromeric Kainate Receptors with Impaired Ligand Binding Sites.
    Scholefield CL; Atlason PT; Jane DE; Molnár E
    Neurochem Res; 2019 Mar; 44(3):585-599. PubMed ID: 30302614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structurally derived model of subunit-dependent NMDA receptor function.
    Gibb AJ; Ogden KK; McDaniel MJ; Vance KM; Kell SA; Butch C; Burger P; Liotta DC; Traynelis SF
    J Physiol; 2018 Sep; 596(17):4057-4089. PubMed ID: 29917241
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.