These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 28935136)
1. Coordinating the uncoordinated: UNC119 trafficking in cilia. Jean F; Pilgrim D Eur J Cell Biol; 2017 Oct; 96(7):643-652. PubMed ID: 28935136 [TBL] [Abstract][Full Text] [Related]
2. A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia. Quidwai T; Wang J; Hall EA; Petriman NA; Leng W; Kiesel P; Wells JN; Murphy LC; Keighren MA; Marsh JA; Lorentzen E; Pigino G; Mill P Elife; 2021 Nov; 10():. PubMed ID: 34734804 [TBL] [Abstract][Full Text] [Related]
3. Whole-Organism Developmental Expression Profiling Identifies RAB-28 as a Novel Ciliary GTPase Associated with the BBSome and Intraflagellar Transport. Jensen VL; Carter S; Sanders AA; Li C; Kennedy J; Timbers TA; Cai J; Scheidel N; Kennedy BN; Morin RD; Leroux MR; Blacque OE PLoS Genet; 2016 Dec; 12(12):e1006469. PubMed ID: 27930654 [TBL] [Abstract][Full Text] [Related]
4. Anterograde trafficking of ciliary MAP kinase-like ICK/CILK1 by the intraflagellar transport machinery is required for intraciliary retrograde protein trafficking. Nakamura K; Noguchi T; Takahara M; Omori Y; Furukawa T; Katoh Y; Nakayama K J Biol Chem; 2020 Sep; 295(38):13363-13376. PubMed ID: 32732286 [TBL] [Abstract][Full Text] [Related]
5. Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors. Hirano T; Katoh Y; Nakayama K Mol Biol Cell; 2017 Feb; 28(3):429-439. PubMed ID: 27932497 [TBL] [Abstract][Full Text] [Related]
6. The emerging functions of intraflagellar transport 52 in ciliary transport and ciliopathies. Udupa P; Ghosh DK Traffic; 2024 Jan; 25(1):e12929. PubMed ID: 38272449 [TBL] [Abstract][Full Text] [Related]
7. An ARL3-UNC119-RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium. Wright KJ; Baye LM; Olivier-Mason A; Mukhopadhyay S; Sang L; Kwong M; Wang W; Pretorius PR; Sheffield VC; Sengupta P; Slusarski DC; Jackson PK Genes Dev; 2011 Nov; 25(22):2347-60. PubMed ID: 22085962 [TBL] [Abstract][Full Text] [Related]
8. Role for the IFT-A Complex in Selective Transport to the Primary Cilium. Fu W; Wang L; Kim S; Li J; Dynlacht BD Cell Rep; 2016 Nov; 17(6):1505-1517. PubMed ID: 27806291 [TBL] [Abstract][Full Text] [Related]
9. UNC119 is required for G protein trafficking in sensory neurons. Zhang H; Constantine R; Vorobiev S; Chen Y; Seetharaman J; Huang YJ; Xiao R; Montelione GT; Gerstner CD; Davis MW; Inana G; Whitby FG; Jorgensen EM; Hill CP; Tong L; Baehr W Nat Neurosci; 2011 Jun; 14(7):874-80. PubMed ID: 21642972 [TBL] [Abstract][Full Text] [Related]
10. Ciliary Tip Signaling Compartment Is Formed and Maintained by Intraflagellar Transport. van der Burght SN; Rademakers S; Johnson JL; Li C; Kremers GJ; Houtsmuller AB; Leroux MR; Jansen G Curr Biol; 2020 Nov; 30(21):4299-4306.e5. PubMed ID: 32916106 [TBL] [Abstract][Full Text] [Related]
11. Genetic interaction of mammalian IFT-A paralogs regulates cilia disassembly, ciliary entry of membrane protein, Hedgehog signaling, and embryogenesis. Wang W; Allard BA; Pottorf TS; Wang HH; Vivian JL; Tran PV FASEB J; 2020 May; 34(5):6369-6381. PubMed ID: 32167205 [TBL] [Abstract][Full Text] [Related]
12. Nephrocystins and MKS proteins interact with IFT particle and facilitate transport of selected ciliary cargos. Zhao C; Malicki J EMBO J; 2011 May; 30(13):2532-44. PubMed ID: 21602787 [TBL] [Abstract][Full Text] [Related]
13. Evolution and expression of the zebrafish unc119 paralogues indicates a conserved role in cilia. Jean F; Pilgrim D Gene Expr Patterns; 2019 Sep; 33():1-10. PubMed ID: 31055152 [TBL] [Abstract][Full Text] [Related]
14. The CEP19-RABL2 GTPase Complex Binds IFT-B to Initiate Intraflagellar Transport at the Ciliary Base. Kanie T; Abbott KL; Mooney NA; Plowey ED; Demeter J; Jackson PK Dev Cell; 2017 Jul; 42(1):22-36.e12. PubMed ID: 28625565 [TBL] [Abstract][Full Text] [Related]
15. ERICH3 in Primary Cilia Regulates Cilium Formation and the Localisations of Ciliary Transport and Sonic Hedgehog Signaling Proteins. Alsolami M; Kuhns S; Alsulami M; Blacque OE Sci Rep; 2019 Nov; 9(1):16519. PubMed ID: 31712586 [TBL] [Abstract][Full Text] [Related]
16. Ciliary protein trafficking mediated by IFT and BBSome complexes with the aid of kinesin-2 and dynein-2 motors. Nakayama K; Katoh Y J Biochem; 2018 Mar; 163(3):155-164. PubMed ID: 29272450 [TBL] [Abstract][Full Text] [Related]
17. Gates for soluble and membrane proteins, and two trafficking systems (IFT and LIFT), establish a dynamic ciliary signaling compartment. Jensen VL; Leroux MR Curr Opin Cell Biol; 2017 Aug; 47():83-91. PubMed ID: 28432921 [TBL] [Abstract][Full Text] [Related]
18. Combinations of deletion and missense variations of the dynein-2 DYNC2LI1 subunit found in skeletal ciliopathies cause ciliary defects. Qiu H; Tsurumi Y; Katoh Y; Nakayama K Sci Rep; 2022 Jan; 12(1):31. PubMed ID: 34997029 [TBL] [Abstract][Full Text] [Related]
19. Separable roles for RanGTP in nuclear and ciliary trafficking of a kinesin-2 subunit. Huang S; Dougherty LL; Avasthi P J Biol Chem; 2021; 296():100117. PubMed ID: 33234597 [TBL] [Abstract][Full Text] [Related]
20. Differential Roles of Tubby Family Proteins in Ciliary Formation and Trafficking. Hong JJ; Kim KE; Park SY; Bok J; Seo JT; Moon SJ Mol Cells; 2021 Aug; 44(8):591-601. PubMed ID: 34462398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]