These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 28935603)
1. Discovery and biochemical characterization of a mannose phosphorylase catalyzing the synthesis of novel β-1,3-mannosides. Awad FN; Laborda P; Wang M; Lu AM; Li Q; Cai ZP; Liu L; Voglmeir J Biochim Biophys Acta Gen Subj; 2017 Dec; 1861(12):3231-3237. PubMed ID: 28935603 [TBL] [Abstract][Full Text] [Related]
2. The GH130 Family of Mannoside Phosphorylases Contains Glycoside Hydrolases That Target β-1,2-Mannosidic Linkages in Candida Mannan. Cuskin F; Baslé A; Ladevèze S; Day AM; Gilbert HJ; Davies GJ; Potocki-Véronèse G; Lowe EC J Biol Chem; 2015 Oct; 290(41):25023-33. PubMed ID: 26286752 [TBL] [Abstract][Full Text] [Related]
3. Role of glycoside phosphorylases in mannose foraging by human gut bacteria. Ladevèze S; Tarquis L; Cecchini DA; Bercovici J; André I; Topham CM; Morel S; Laville E; Monsan P; Lombard V; Henrissat B; Potocki-Véronèse G J Biol Chem; 2013 Nov; 288(45):32370-32383. PubMed ID: 24043624 [TBL] [Abstract][Full Text] [Related]
4. Functions, structures, and applications of cellobiose 2-epimerase and glycoside hydrolase family 130 mannoside phosphorylases. Saburi W Biosci Biotechnol Biochem; 2016 Jul; 80(7):1294-305. PubMed ID: 27031293 [TBL] [Abstract][Full Text] [Related]
5. Discovery of two β-1,2-mannoside phosphorylases showing different chain-length specificities from Thermoanaerobacter sp. X-514. Chiku K; Nihira T; Suzuki E; Nishimoto M; Kitaoka M; Ohtsubo K; Nakai H PLoS One; 2014; 9(12):e114882. PubMed ID: 25500577 [TBL] [Abstract][Full Text] [Related]
6. Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase. Kawahara R; Saburi W; Odaka R; Taguchi H; Ito S; Mori H; Matsui H J Biol Chem; 2012 Dec; 287(50):42389-99. PubMed ID: 23093406 [TBL] [Abstract][Full Text] [Related]
8. Characterization and crystal structure determination of β-1,2-mannobiose phosphorylase from Listeria innocua. Tsuda T; Nihira T; Chiku K; Suzuki E; Arakawa T; Nishimoto M; Kitaoka M; Nakai H; Fushinobu S FEBS Lett; 2015 Dec; 589(24 Pt B):3816-21. PubMed ID: 26632508 [TBL] [Abstract][Full Text] [Related]
9. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies. Ye Y; Saburi W; Odaka R; Kato K; Sakurai N; Komoda K; Nishimoto M; Kitaoka M; Mori H; Yao M FEBS Lett; 2016 Mar; 590(6):828-37. PubMed ID: 26913570 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the diversity of the glycoside hydrolase family 130 in mammal gut microbiomes reveals a novel mannoside-phosphorylase function. Li A; Laville E; Tarquis L; Lombard V; Ropartz D; Terrapon N; Henrissat B; Guieysse D; Esque J; Durand J; Morgavi DP; Potocki-Veronese G Microb Genom; 2020 Oct; 6(10):. PubMed ID: 32667876 [TBL] [Abstract][Full Text] [Related]
11. Identification of Kuhaudomlarp S; Patron NJ; Henrissat B; Rejzek M; Saalbach G; Field RA J Biol Chem; 2018 Feb; 293(8):2865-2876. PubMed ID: 29317507 [TBL] [Abstract][Full Text] [Related]
12. In Vitro Synthesis and Crystallization of β-1,4-Mannan. Grimaud F; Pizzut-Serin S; Tarquis L; Ladevèze S; Morel S; Putaux JL; Potocki-Veronese G Biomacromolecules; 2019 Feb; 20(2):846-853. PubMed ID: 30521331 [TBL] [Abstract][Full Text] [Related]
13. An inverting β-1,2-mannosidase belonging to glycoside hydrolase family 130 from Dyadobacter fermentans. Nihira T; Chiku K; Suzuki E; Nishimoto M; Fushinobu S; Kitaoka M; Ohtsubo K; Nakai H FEBS Lett; 2015 Nov; 589(23):3604-10. PubMed ID: 26476324 [TBL] [Abstract][Full Text] [Related]
14. Discovery of solabiose phosphorylase and its application for enzymatic synthesis of solabiose from sucrose and lactose. Saburi W; Nihira T; Nakai H; Kitaoka M; Mori H Sci Rep; 2022 Jan; 12(1):259. PubMed ID: 34997180 [TBL] [Abstract][Full Text] [Related]
15. Discovery of cellobionic acid phosphorylase in cellulolytic bacteria and fungi. Nihira T; Saito Y; Nishimoto M; Kitaoka M; Igarashi K; Ohtsubo K; Nakai H FEBS Lett; 2013 Nov; 587(21):3556-61. PubMed ID: 24055472 [TBL] [Abstract][Full Text] [Related]
16. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library. Macdonald SS; Patel A; Larmour VLC; Morgan-Lang C; Hallam SJ; Mark BL; Withers SG J Biol Chem; 2018 Mar; 293(9):3451-3467. PubMed ID: 29317495 [TBL] [Abstract][Full Text] [Related]
17. Development and Application of a High-Throughput Functional Metagenomic Screen for Glycoside Phosphorylases. Macdonald SS; Armstrong Z; Morgan-Lang C; Osowiecka M; Robinson K; Hallam SJ; Withers SG Cell Chem Biol; 2019 Jul; 26(7):1001-1012.e5. PubMed ID: 31080075 [TBL] [Abstract][Full Text] [Related]
18. Functional characterization of a novel GH94 glycoside phosphorylase, 3-O-β-d-glucopyranosyl β-d-glucuronide phosphorylase, and implication of the metabolic pathway of acidic carbohydrates in Paenibacillus borealis. Isono N; Mizutani E; Hayashida H; Katsuzaki H; Saburi W Biochem Biophys Res Commun; 2022 Oct; 625():60-65. PubMed ID: 35947916 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic alpha-glucosaminylation of maltooligosaccharides catalyzed by phosphorylase. Nawaji M; Izawa H; Kaneko Y; Kadokawa J Carbohydr Res; 2008 Oct; 343(15):2692-6. PubMed ID: 18768171 [TBL] [Abstract][Full Text] [Related]
20. The endo-beta-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours. Jam M; Flament D; Allouch J; Potin P; Thion L; Kloareg B; Czjzek M; Helbert W; Michel G; Barbeyron T Biochem J; 2005 Feb; 385(Pt 3):703-13. PubMed ID: 15456406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]