These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 2893586)

  • 1. Significance of the alanine aminotransferase reaction in the formation of alpha-ketoglutarate in rat liver mitochondria.
    Lenartowicz E; Wojtczak AB
    Arch Biochem Biophys; 1988 Jan; 260(1):309-19. PubMed ID: 2893586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The role of malate in regulating the rate of mitochondrial respiration in vitro].
    Vovyleva-Guarriero VB; Wehbie RS; Muscatello U; Lardi GA
    Biokhimiia; 1991 Mar; 56(3):542-51. PubMed ID: 1883909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue.
    Patel MS; Jomain-Baum M; Ballard FJ; Hanson RW
    J Lipid Res; 1971 Mar; 12(2):179-91. PubMed ID: 4396562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transamination pathways influencing L-glutamine and L-glutamate oxidation by rat enterocyte mitochondria and the subcellular localization of L-alanine aminotransferase and L-aspartate aminotransferase.
    Masola B; Peters TJ; Evered DF
    Biochim Biophys Acta; 1985 Nov; 843(1-2):137-43. PubMed ID: 2865979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of pyruvate carboxylation in the energy-linked regulation of pool sizes of tricarboxylic acid-cycle intermediates in the myocardium.
    Peuhkurinen KJ; Nuutinen EM; Pietiläinen EP; Hiltunen JK; Hassinen IE
    Biochem J; 1982 Dec; 208(3):577-81. PubMed ID: 6131668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of malate dehydrogenase activity by glutamate, citrate, alpha-ketoglutarate, and multienzyme interaction.
    Fahien LA; Kmiotek EH; MacDonald MJ; Fibich B; Mandic M
    J Biol Chem; 1988 Aug; 263(22):10687-97. PubMed ID: 2899080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulation of glutamate metabolism by tricarboxylic acid-cycle activity in rat brain mitochondria.
    Dennis SC; Clark JB
    Biochem J; 1978 Apr; 172(1):155-62. PubMed ID: 656069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Net citrate production by isolated prostate epithelial cells.
    Costello LC; Akuffo V; Franklin RB
    Enzyme; 1988; 39(3):125-33. PubMed ID: 3378541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. METABOLISM OF PROPIONATE BY SHEEP LIVER. INTERRELATIONS OF PROPIONATE AND GLUTAMATE IN AGED MITOCHONDRIA.
    SMITH RM; OSBORNE-WHITE WS; RUSSELL GR
    Biochem J; 1965 May; 95(2):431-6. PubMed ID: 14340093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of alloxan on the transport of dicarboxylate, tricarboxylate, pyruvate and glutamate in isolated mouse liver mitochondria.
    Nelson L; Boquist L
    Acta Diabetol Lat; 1982; 19(3):253-9. PubMed ID: 6128851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate dehydrogenase and a proposed glutamate-aspartate pathway for citrate synthesis in rat ventral prostate.
    Franklin RB; Costello LC
    J Urol; 1984 Dec; 132(6):1239-43. PubMed ID: 6150122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Interactions of pyruvate and glutamate oxidations at the level of swine heart mitochondria].
    Younes A; Durand R; Briand Y; Gautheron D
    Bull Soc Chim Biol (Paris); 1970 Sep; 52(7):811-30. PubMed ID: 5459143
    [No Abstract]   [Full Text] [Related]  

  • 14. [Oxidation of Krebs cycle substrates by Eurytrema pancreaticum mitochondria].
    Shestak EA
    Parazitologiia; 1977; 11(5):412-6. PubMed ID: 909726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of metabolites between the cytosolic and mitochondrial compartments of hepatocytes isolated from fed rats.
    Siess EA; Brocks DG; Wieland OH
    Hoppe Seylers Z Physiol Chem; 1978 Jul; 359(7):785-98. PubMed ID: 680639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of amino acid formation during palmitate oxidation in rat brain mitochondria.
    Kawamura N
    Neurochem Res; 1989 Jan; 14(1):9-15. PubMed ID: 2565541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disequilibrium in the malate dehydrogenase reaction in rat liver mitochondria in vivo.
    Heath DF; Phillips JC
    Biochem J; 1972 Apr; 127(3):453-70. PubMed ID: 4342489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of cosubstrates on tricarboxylic acid cycle dynamics during pyruvate oxidation: the formation of alpha-ketoglutarate and utilization of glutamate by mitochondria from rabbit brain.
    Von Korff RW; Kerpel-Fronius S
    J Neurochem; 1975 Dec; 25(6):767-78. PubMed ID: 1236721
    [No Abstract]   [Full Text] [Related]  

  • 19. The biosynthesis of aspartic acid, glutamic acid, and alanine in Rhizobium japonicum.
    Lillich TT; Elkan GH
    Can J Microbiol; 1971 May; 17(5):683-8. PubMed ID: 5087891
    [No Abstract]   [Full Text] [Related]  

  • 20. Calcium and 2-oxoglutarate-mediated control of aspartate formation by rat heart mitochondria.
    Scaduto RC
    Eur J Biochem; 1994 Aug; 223(3):751-8. PubMed ID: 7914488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.