BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 28935890)

  • 1. Demonstration and Analysis of the Suction Effect for Pumping Lymph from Tissue Beds at Subatmospheric Pressure.
    Jamalian S; Jafarnejad M; Zawieja SD; Bertram CD; Gashev AA; Zawieja DC; Davis MJ; Moore JE
    Sci Rep; 2017 Sep; 7(1):12080. PubMed ID: 28935890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiologic aspects of lymphatic contractile function: current perspectives.
    Gashev AA
    Ann N Y Acad Sci; 2002 Dec; 979():178-87; discussion 188-96. PubMed ID: 12543727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lymphatic pumping: mechanics, mechanisms and malfunction.
    Scallan JP; Zawieja SD; Castorena-Gonzalez JA; Davis MJ
    J Physiol; 2016 Oct; 594(20):5749-5768. PubMed ID: 27219461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical forces and lymphatic transport.
    Breslin JW
    Microvasc Res; 2014 Nov; 96():46-54. PubMed ID: 25107458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A one-dimensional mathematical model of collecting lymphatics coupled with an electro-fluid-mechanical contraction model and valve dynamics.
    Contarino C; Toro EF
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1687-1714. PubMed ID: 30006745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of the active lymph pump in bovine prenodal mesenteric lymphatics.
    Gashev AA; Wang W; Laine GA; Stewart RH; Zawieja DC
    Lymphat Res Biol; 2007; 5(2):71-9. PubMed ID: 17935475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lymphatic Vessel Pumping.
    von der Weid PY
    Adv Exp Med Biol; 2019; 1124():357-377. PubMed ID: 31183835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymph flow in sheep limbs during local exposure to subatmospheric pressure.
    Pippard CJ; Roddie IC
    J Physiol; 1989 Dec; 419():45-57. PubMed ID: 2621636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of valve leaflet mechanics on lymphatic pumping assessed using numerical simulations.
    Li H; Mei Y; Maimon N; Padera TP; Baish JW; Munn LL
    Sci Rep; 2019 Jul; 9(1):10649. PubMed ID: 31337769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational model of a network of initial lymphatics and pre-collectors with permeable interstitium.
    Ikhimwin BO; Bertram CD; Jamalian S; Macaskill C
    Biomech Model Mechanobiol; 2020 Apr; 19(2):661-676. PubMed ID: 31696326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lymphedema: anatomy, physiology and pathogenesis.
    Szuba A; Rockson SG
    Vasc Med; 1997 Nov; 2(4):321-6. PubMed ID: 9575606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constriction of isolated collecting lymphatic vessels in response to acute increases in downstream pressure.
    Scallan JP; Wolpers JH; Davis MJ
    J Physiol; 2013 Jan; 591(2):443-59. PubMed ID: 23045335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid pressures in the rabbit popliteal afferent lymphatics during passive tissue motion.
    Ikomi E; Zweifach BW; Schmid-Schonbein GW
    Lymphology; 1997 Mar; 30(1):13-23. PubMed ID: 9106135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of valve gating in collecting lymphatic vessels from rat mesentery.
    Davis MJ; Rahbar E; Gashev AA; Zawieja DC; Moore JE
    Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H48-60. PubMed ID: 21460194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The second valve system in lymphatics.
    Schmid-Schönbein GW
    Lymphat Res Biol; 2003; 1(1):25-9; discussion 29-31. PubMed ID: 15624318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of active lymph pump by simulated microgravity in rats.
    Gashev AA; Delp MD; Zawieja DC
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2295-308. PubMed ID: 16399874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.
    Kornuta JA; Nepiyushchikh Z; Gasheva OY; Mukherjee A; Zawieja DC; Dixon JB
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(9):R1122-34. PubMed ID: 26333787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between lymphangion chain length and maximum pressure generation established through in vivo imaging and computational modeling.
    Razavi MS; Nelson TS; Nepiyushchikh Z; Gleason RL; Dixon JB
    Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1249-H1260. PubMed ID: 28778909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the Pressure Drop Required for Lymph Flow through Initial Lymphatic Networks.
    Sloas DC; Stewart SA; Sweat RS; Doggett TM; Alves NG; Breslin JW; Gaver DP; Murfee WL
    Lymphat Res Biol; 2016 Jun; 14(2):62-9. PubMed ID: 27267167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energetics of lymph formation.
    Guyton AC; Barber BJ
    Lymphology; 1980 Dec; 13(4):173-6. PubMed ID: 7010000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.