BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 28935896)

  • 1. Network heterogeneity regulates steering in actin-based motility.
    Boujemaa-Paterski R; Suarez C; Klar T; Zhu J; Guérin C; Mogilner A; Théry M; Blanchoin L
    Nat Commun; 2017 Sep; 8(1):655. PubMed ID: 28935896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The comings and goings of actin: coupling protrusion and retraction in cell motility.
    Small JV; Resch GP
    Curr Opin Cell Biol; 2005 Oct; 17(5):517-23. PubMed ID: 16099152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed actin assembly and motility.
    Boujemaa-Paterski R; Galland R; Suarez C; Guérin C; Théry M; Blanchoin L
    Methods Enzymol; 2014; 540():283-300. PubMed ID: 24630113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two distinct actin networks drive the protrusion of migrating cells.
    Ponti A; Machacek M; Gupton SL; Waterman-Storer CM; Danuser G
    Science; 2004 Sep; 305(5691):1782-6. PubMed ID: 15375270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the relation between filament density, force generation, and protrusion rate in mesenchymal cell motility.
    Dolati S; Kage F; Mueller J; Müsken M; Kirchner M; Dittmar G; Sixt M; Rottner K; Falcke M
    Mol Biol Cell; 2018 Nov; 29(22):2674-2686. PubMed ID: 30156465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement.
    Disanza A; Steffen A; Hertzog M; Frittoli E; Rottner K; Scita G
    Cell Mol Life Sci; 2005 May; 62(9):955-70. PubMed ID: 15868099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory from the Oster Laboratory Leaps Ahead of Experiment in Understanding Actin-Based Cellular Motility.
    Pollard TD
    Biophys J; 2016 Oct; 111(8):1589-1592. PubMed ID: 27760345
    [No Abstract]   [Full Text] [Related]  

  • 8. Actin and cell movement.
    Small JV; Rohlfs A; Herzog M
    Symp Soc Exp Biol; 1993; 47():57-71. PubMed ID: 8165579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How tropomyosin regulates lamellipodial actin-based motility: a combined biochemical and reconstituted motility approach.
    Bugyi B; Didry D; Carlier MF
    EMBO J; 2010 Jan; 29(1):14-26. PubMed ID: 19893490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leading edge maintenance in migrating cells is an emergent property of branched actin network growth.
    Garner RM; Theriot JA
    Elife; 2022 Mar; 11():. PubMed ID: 35275060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lamellipodium tip actin barbed ends serve as a force sensor.
    Koseki K; Taniguchi D; Yamashiro S; Mizuno H; Vavylonis D; Watanabe N
    Genes Cells; 2019 Nov; 24(11):705-718. PubMed ID: 31514256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete mechanical model of lamellipodial actin network implements molecular clutch mechanism and generates arcs and microspikes.
    Rutkowski DM; Vavylonis D
    PLoS Comput Biol; 2021 Oct; 17(10):e1009506. PubMed ID: 34662335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurement of force generation by actin filament polymerization using an optical trap.
    Footer MJ; Kerssemakers JW; Theriot JA; Dogterom M
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2181-6. PubMed ID: 17277076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of lamellipodia protrusion is determined by the extent of cytosolic actin assembly.
    Dimchev G; Steffen A; Kage F; Dimchev V; Pernier J; Carlier MF; Rottner K
    Mol Biol Cell; 2017 May; 28(10):1311-1325. PubMed ID: 28331069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subsecond reorganization of the actin network in cell motility and chemotaxis.
    Diez S; Gerisch G; Anderson K; Müller-Taubenberger A; Bretschneider T
    Proc Natl Acad Sci U S A; 2005 May; 102(21):7601-6. PubMed ID: 15894626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protrusion and actin assembly are coupled to the organization of lamellar contractile structures.
    Lim JI; Sabouri-Ghomi M; Machacek M; Waterman CM; Danuser G
    Exp Cell Res; 2010 Aug; 316(13):2027-41. PubMed ID: 20406634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin dynamics, architecture, and mechanics in cell motility.
    Blanchoin L; Boujemaa-Paterski R; Sykes C; Plastino J
    Physiol Rev; 2014 Jan; 94(1):235-63. PubMed ID: 24382887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actin dynamics: growth from dendritic branches.
    Nicholson-Dykstra S; Higgs HN; Harris ES
    Curr Biol; 2005 May; 15(9):R346-57. PubMed ID: 15886095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of cell motility that reproduces the force-velocity relationship.
    Schreiber CH; Stewart M; Duke T
    Proc Natl Acad Sci U S A; 2010 May; 107(20):9141-6. PubMed ID: 20439759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic-structural analysis of neuronal growth cone veil motility.
    Mongiu AK; Weitzke EL; Chaga OY; Borisy GG
    J Cell Sci; 2007 Mar; 120(Pt 6):1113-25. PubMed ID: 17327278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.