These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 2893614)

  • 1. Structural and functional differences in H+-ATPases with native and reconstituted inhibitor protein.
    Valdés AM; Dreyfus G
    Biochem Int; 1987 Aug; 15(2):459-66. PubMed ID: 2893614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure effects on the interaction between natural inhibitor protein and mitochondrial F1-ATPase.
    Fornells LA; Guimarães-Motta H; Nehme JS; Martins OB; Silva JL
    Arch Biochem Biophys; 1998 Jan; 349(2):304-12. PubMed ID: 9448719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis.
    Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD
    Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinetic study on the hydrolytic activity of mitochondrial ATPase (F0-F1 complex) from pig heart.
    Ye JJ; Lin ZH
    Biochem Int; 1986 May; 12(5):669-76. PubMed ID: 2873816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of the mitochondrial F1-ATPase tryptophan phosphorescence at 273 K.
    Baracca A; Barogi S; Gabellieri E; Lenaz G; Solaini G
    Biochem Biophys Res Commun; 1995 Feb; 207(1):369-74. PubMed ID: 7857290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of denaturants on multisite and unisite ATP hydrolysis by bovine heart submitochondrial particles with and without inhibitor protein.
    de Gómez-Puyou MT; Domínguez-Ramírez L; Pérez-Hernández G; Gómez-Puyou A
    Arch Biochem Biophys; 2005 Jul; 439(1):129-37. PubMed ID: 15950171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topological and functional relationship of subunits F1-gamma and F0I-PVP(b) in the mitochondrial H+-ATP synthase.
    Gaballo A; Zanotti F; Solimeo A; Papa S
    Biochemistry; 1998 Dec; 37(50):17519-26. PubMed ID: 9860867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of F1-ATPase, from ox heart mitochondria with its naturally occurring inhibitor protein. Studies using radio-iodinated inhibitor protein.
    Power J; Cross RL; Harris DA
    Biochim Biophys Acta; 1983 Jul; 724(1):128-41. PubMed ID: 6223660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Interaction of ATPase from submitochondrial fragments and a natural inhibitor protein during delta-mu-H+ generation on a membrane].
    Vasil'eva EA; Panchenko MV; Vinogradov AD
    Biokhimiia; 1989 Sep; 54(9):1490-8. PubMed ID: 2531616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution and reconstitution of H+ -ATPase complex from beef heart mitochondria.
    Joshi S; Hughes JB; Torok K; Sanadi DR
    Membr Biochem; 1985; 5(4):309-25. PubMed ID: 2858048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenine nucleotides regulate the functional transition in mitochondrial H+-ATPase and the kinetic behaviour of its ATP-synthetase form.
    Bronnikov GE; Samoylova EV
    Biochem Int; 1987 May; 14(5):859-69. PubMed ID: 2900638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Kinetic evidence of the interaction of three nucleotide-binding centers of mitochondrial ATP-synthetase].
    Bulygin VV; Vinogradov AD
    Biokhimiia; 1989 Aug; 54(8):1359-67. PubMed ID: 2510833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic mechanism of ATP synthesis catalyzed by mitochondrial Fo x F1-ATPase.
    Galkin MA; Syroeshkin AV
    Biochemistry (Mosc); 1999 Oct; 64(10):1176-85. PubMed ID: 10561566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic hydrolysis and synthesis of adenosine 5'-triphosphate by stereoisomers of covalently labeled F1-adenosinetriphosphatase and reconstituted submitochondrial particles.
    Wang JH; Cesana J; Wu JC
    Biochemistry; 1987 Aug; 26(17):5527-33. PubMed ID: 2890376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of nucleotides bound to reconstituted Fo-F1 during adenosine 5'-triphosphate synthesis activation or hydrolysis: role of protein inhibitor and hysteretic inhibition.
    Penin F; Di Pietro A; Godinot C; Gautheron DC
    Biochemistry; 1988 Dec; 27(25):8969-74. PubMed ID: 2906804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase.
    Böckmann RA; Grubmüller H
    Nat Struct Biol; 2002 Mar; 9(3):198-202. PubMed ID: 11836535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of F0 and F1 subunits in the gating and coupling function of mitochondrial H(+)-ATP synthase. The effect of dithiol reagents.
    Zanotti F; Guerrieri F; Capozza G; Fiermonte M; Berden J; Papa S
    Eur J Biochem; 1992 Aug; 208(1):9-16. PubMed ID: 1387361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic properties of mitochondrial H+-adenosine triphosphatase in Morris hepatoma 3924A.
    Capuano F; Stefanelli R; Carrieri E; Papa S
    Cancer Res; 1989 Dec; 49(23):6547-50. PubMed ID: 2531032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the ATPase activities of bovine heart and liver mitochondrial ATP synthases with different tissue-specific gamma subunit isoforms.
    Matsuda C; Muneyuki E; Endo H; Yoshida M; Kagawa Y
    Biochem Biophys Res Commun; 1994 Apr; 200(2):671-8. PubMed ID: 8179599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of mild trypsin digestion of F1 on energy coupling in the mitochondrial ATP synthase.
    Xu T; Candita C; Papa S
    FEBS Lett; 1996 Nov; 397(2-3):308-12. PubMed ID: 8955369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.