These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 2893614)
41. ATP synthase complex from bovine heart mitochondria. Subunit arrangement as revealed by nearest neighbor analysis and susceptibility to trypsin. Joshi S; Burrows R J Biol Chem; 1990 Aug; 265(24):14518-25. PubMed ID: 2143762 [TBL] [Abstract][Full Text] [Related]
42. Inhibition of mitochondrial F1-ATPase activity by an anti-alpha subunit monoclonal antibody which modifies interactions between catalytic and regulatory sites. Moradi-Améli M; Julliard JH; Godinot C J Biol Chem; 1989 Jan; 264(3):1361-7. PubMed ID: 2536364 [TBL] [Abstract][Full Text] [Related]
43. Regulatory role of the ATPase inhibitor protein on proton conduction by mitochondrial H+-ATPase complex. Guerrieri F; Scarfò R; Zanotti F; Che YW; Papa S FEBS Lett; 1987 Mar; 213(1):67-72. PubMed ID: 2881808 [TBL] [Abstract][Full Text] [Related]
44. Synthesis and release of ATP by soluble mitochondrial F1 in complex with its inhibitor protein during dimethylsulfoxide-water transitions. Tuena de Gómez-Puyou M; Sandoval F; García JJ; Gómez-Puyou A Eur J Biochem; 1998 Jul; 255(1):303-8. PubMed ID: 9692932 [TBL] [Abstract][Full Text] [Related]
45. ATPase of bovine heart mitochondria. Modulation of ITPase activity by ATP, ADP, acetyl ATP and acetyl AMP. Thomassen J; Klungsøyr L Biochim Biophys Acta; 1983 Apr; 723(1):114-22. PubMed ID: 6131689 [TBL] [Abstract][Full Text] [Related]
46. Synthesis of pyrophosphate and ATP by soluble mitochondrial F1. Tuena de Gómez-Puyou M; de Jesús García J; Gómez-Puyou A Biochemistry; 1993 Mar; 32(9):2213-8. PubMed ID: 8382946 [TBL] [Abstract][Full Text] [Related]
47. Inhibitory chemical modifications of F1-ATPase: effects on the kinetics of adenosine 5'-triphosphate synthesis and hydrolysis in reconstituted systems. Matsuno-Yagi A; Hatefi Y Biochemistry; 1984 Jul; 23(15):3508-14. PubMed ID: 6235851 [TBL] [Abstract][Full Text] [Related]
48. Studies on the mechanism of oxidative phosphorylation. Different effects of F0 inhibitors on unisite and multisite ATP hydrolysis by bovine submitochondrial particles. Matsuno-Yagi A; Hatefi Y J Biol Chem; 1993 Jan; 268(3):1539-45. PubMed ID: 8380571 [TBL] [Abstract][Full Text] [Related]
49. ATP synthesis catalyzed by the mitochondrial F1-F0 ATP synthase is not a reversal of its ATPase activity. Syroeshkin AV; Vasilyeva EA; Vinogradov AD FEBS Lett; 1995 Jun; 366(1):29-32. PubMed ID: 7789510 [TBL] [Abstract][Full Text] [Related]
50. Effect of the protonmotive force on ATP-linked processes and mobilization of the bound natural ATPase inhibitor in beef heart submitochondrial particles. Klein G; Vignais PV J Bioenerg Biomembr; 1983 Dec; 15(6):347-62. PubMed ID: 18251431 [TBL] [Abstract][Full Text] [Related]
51. The native F0F1-inhibitor protein complex from beef heart mitochondria and its reconstitution in liposomes. Vázquez-Contreras E; Vázquez-Laslop N; Dreyfus G J Bioenerg Biomembr; 1995 Feb; 27(1):109-16. PubMed ID: 7629042 [TBL] [Abstract][Full Text] [Related]
52. Mitochondrial adenosinetriphosphatase inhibitor protein: reversible interaction with complex V (ATP synthetase complex). Galante YM; Wong SY; Hatefi Y Biochemistry; 1981 Apr; 20(9):2671-8. PubMed ID: 6263316 [TBL] [Abstract][Full Text] [Related]
53. Identification of functional domains and critical residues in the adenosinetriphosphatase inhibitor protein of mitochondrial F0F1 ATP synthase. Papa S; Zanotti F; Cocco T; Perrucci C; Candita C; Minuto M Eur J Biochem; 1996 Sep; 240(2):461-7. PubMed ID: 8841413 [TBL] [Abstract][Full Text] [Related]
54. Binding of dicyclohexylcarbodiimide to a native F1-ATPase-inhibitor protein complex isolated from bovine heart mitochondria. Beltrán C; Gómez-Puyou A; Tuena de Gómez-Puyou M Biochem Biophys Res Commun; 1988 Apr; 152(2):867-73. PubMed ID: 2896504 [TBL] [Abstract][Full Text] [Related]
55. Interaction of Mg2+ with F0.F1 mitochondrial ATPase as related to its slow active/inactive transition. Bulygin VV; Vinogradov AD Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):149-56. PubMed ID: 1828147 [TBL] [Abstract][Full Text] [Related]
56. Efficient reconstitution of mitochondrial energy-transfer reactions from depleted membranes and F1-ATPase as a function of the amount of bound oligomycin sensitivity-conferring protein (OSCP). Penin F; Deléage G; Godinot C; Gautheron DC Biochim Biophys Acta; 1986 Nov; 852(1):55-67. PubMed ID: 2876727 [TBL] [Abstract][Full Text] [Related]
57. [Kinetics of the interaction of ATPase of submitochondrial fragments and a natural protein-inhibitor]. Panchenko MV; Vinogradov AD Biokhimiia; 1989 Apr; 54(4):569-79. PubMed ID: 2527066 [TBL] [Abstract][Full Text] [Related]
58. Unisite and multisite ATP hydrolysis and synthesis by bovine submitochondrial particles. Hatefi Y; Matsuno-Yagi A Ann N Y Acad Sci; 1992 Nov; 671():377-84; discussion 385. PubMed ID: 1288334 [No Abstract] [Full Text] [Related]
59. Effect of phospholipids on the catalytic subunits of the mitochondrial F0.F1-ATPase. Laird DM; Parce JW; Montgomery RI; Cunningham CC J Biol Chem; 1986 Nov; 261(31):14851-6. PubMed ID: 2876989 [TBL] [Abstract][Full Text] [Related]
60. Release of the inhibitory action of the natural ATPase inhibitor protein on the mitochondrial ATPase. Beltrán C; de Gómez-Puyou MT; Gómez-Puyou A; Darszon A Eur J Biochem; 1984 Oct; 144(1):151-7. PubMed ID: 6236977 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]