These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 28936316)
1. Sensitization of wide band gap photocatalysts to visible light by molten CuCl treatment. Iwashina K; Iwase A; Kudo A Chem Sci; 2015 Jan; 6(1):687-692. PubMed ID: 28936316 [TBL] [Abstract][Full Text] [Related]
2. Photocatalytic Properties of Layered Metal Oxides Substituted with Silver by a Molten AgNO3 Treatment. Horie H; Iwase A; Kudo A ACS Appl Mater Interfaces; 2015 Jul; 7(27):14638-43. PubMed ID: 26099451 [TBL] [Abstract][Full Text] [Related]
3. Visible-light-driven Cu(II)-(Sr(1-y)Na(y))(Ti(1-x)Mo(x))O3 photocatalysts based on conduction band control and surface ion modification. Qiu X; Miyauchi M; Yu H; Irie H; Hashimoto K J Am Chem Soc; 2010 Nov; 132(43):15259-67. PubMed ID: 20932016 [TBL] [Abstract][Full Text] [Related]
4. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. Tsuji I; Kato H; Kobayashi H; Kudo A J Am Chem Soc; 2004 Oct; 126(41):13406-13. PubMed ID: 15479097 [TBL] [Abstract][Full Text] [Related]
6. High light harvesting efficiency CuInS Yuan YJ; Fang G; Chen D; Huang Y; Yang LX; Cao DP; Wang J; Yu ZT; Zou ZG Dalton Trans; 2018 Apr; 47(16):5652-5659. PubMed ID: 29623329 [TBL] [Abstract][Full Text] [Related]
7. Control of Spatially Homogeneous Distribution of Heteroatoms to Produce Red TiO Hong X; Tan J; Zhu H; Feng N; Yang Y; Irvine JTS; Wang L; Liu G; Cheng HM Chemistry; 2019 Feb; 25(7):1787-1794. PubMed ID: 30489669 [TBL] [Abstract][Full Text] [Related]
8. Realizing high hydrogen evolution activity under visible light using narrow band gap organic photocatalysts. Han C; Dong P; Tang H; Zheng P; Zhang C; Wang F; Huang F; Jiang JX Chem Sci; 2020 Dec; 12(5):1796-1802. PubMed ID: 34163942 [TBL] [Abstract][Full Text] [Related]
9. Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: A review. Rao VN; Reddy NL; Kumari MM; Cheralathan KK; Ravi P; Sathish M; Neppolian B; Reddy KR; Shetti NP; Prathap P; Aminabhavi TM; Shankar MV J Environ Manage; 2019 Oct; 248():109246. PubMed ID: 31323456 [TBL] [Abstract][Full Text] [Related]
10. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution. Wang DH; Wang L; Xu AW Nanoscale; 2012 Mar; 4(6):2046-53. PubMed ID: 22327298 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of new visible light active photocatalysts of Ba(In(1/3)Pb(1/3)M'(1/3))O3 (M' = Nb, Ta): a band gap engineering strategy based on electronegativity of a metal component. Hur SG; Kim TW; Hwang SJ; Park H; Choi W; Kim SJ; Choy JH J Phys Chem B; 2005 Aug; 109(31):15001-7. PubMed ID: 16852899 [TBL] [Abstract][Full Text] [Related]
12. Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. Kitano M; Funatsu K; Matsuoka M; Ueshima M; Anpo M J Phys Chem B; 2006 Dec; 110(50):25266-72. PubMed ID: 17165971 [TBL] [Abstract][Full Text] [Related]
13. Solar hydrogen production over novel metal sulfide photocatalysts of AGa2In3S8 (A = Cu or Ag) with layered structures. Kaga H; Saito K; Kudo A Chem Commun (Camb); 2010 Jun; 46(21):3779-81. PubMed ID: 20383409 [TBL] [Abstract][Full Text] [Related]
14. Hydrothermal preparation of copper doped NaTaO3 nanoparticles and study on the photocatalytic mechanism. Liu Y; Su Y; Han H; Wang X J Nanosci Nanotechnol; 2013 Feb; 13(2):853-7. PubMed ID: 23646529 [TBL] [Abstract][Full Text] [Related]
15. Noninvasively Modifying Band Structures of Wide-Bandgap Metal Oxides to Boost Photocatalytic Activity. Yu Z; Chen XQ; Kang X; Xie Y; Zhu H; Wang S; Ullah S; Ma H; Wang L; Liu G; Ma X; Cheng HM Adv Mater; 2018 Apr; 30(14):e1706259. PubMed ID: 29457289 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of g-C3N4/NaTaO3 Hybrid Composite Photocatalysts and Their Photocatalytic Activity Under Simulated Solar Light Irradiation. Kim TH; Jo YH; Soo-Wohn ; Adhikari R; Cho SH J Nanosci Nanotechnol; 2015 Sep; 15(9):7125-9. PubMed ID: 26716296 [TBL] [Abstract][Full Text] [Related]
17. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications. Regulacio MD; Han MY Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703 [TBL] [Abstract][Full Text] [Related]
18. The atomic-scale structure of LaCrO Sudrajat H; Zhou Y; Sasaki T; Ichikuni N; Onishi H Phys Chem Chem Phys; 2019 Feb; 21(9):5148-5157. PubMed ID: 30773578 [TBL] [Abstract][Full Text] [Related]
19. Iron(III)-based metal-organic frameworks as visible light photocatalysts. Laurier KG; Vermoortele F; Ameloot R; De Vos DE; Hofkens J; Roeffaers MB J Am Chem Soc; 2013 Oct; 135(39):14488-91. PubMed ID: 24015906 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts. Joung SK; Amemiya T; Murabayashi M; Itoh K Chemistry; 2006 Jul; 12(21):5526-34. PubMed ID: 16548017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]