These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 28936722)

  • 21. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH.
    Bruce D; Samson G; Carpenter C
    Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen evolution from single- and multiple-turnover light pulses: temporal kinetics of electron transport through PSII in sunflower leaves.
    Oja V; Eichelmann H; Laisk A
    Photosynth Res; 2011 Dec; 110(2):99-109. PubMed ID: 22038184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photosystem II antennae are not energetically connected: evidence based on flash-induced O2 evolution and chlorophyll fluorescence in sunflower leaves.
    Oja V; Laisk A
    Photosynth Res; 2012 Oct; 114(1):15-28. PubMed ID: 22890327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1.
    Laisk A; Oja V; Eichelmann H; Dall'Osto L
    Biochim Biophys Acta; 2014 Feb; 1837(2):315-25. PubMed ID: 24333386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prying into the green black-box.
    Laisk A
    Photosynth Res; 2022 Nov; 154(2):89-112. PubMed ID: 36114436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the wave phenomenon of flash-induced chlorophyll fluorescence in Chlamydomonas reinhardtii.
    Patil PP; Mohammad Aslam S; Vass I; Szabó M
    Photosynth Res; 2022 May; 152(2):235-244. PubMed ID: 35166999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photosynthetic electron transport activity in heat-treated barley leaves: the role of internal alternative electron donors to photosystem II.
    Tóth SZ; Schansker G; Garab G; Strasser RJ
    Biochim Biophys Acta; 2007 Apr; 1767(4):295-305. PubMed ID: 17412308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise.
    Stirbet A; Govindjee
    Photosynth Res; 2012 Sep; 113(1-3):15-61. PubMed ID: 22810945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissection of photosynthetic electron transport process in sweet sorghum under heat stress.
    Yan K; Chen P; Shao H; Shao C; Zhao S; Brestic M
    PLoS One; 2013; 8(5):e62100. PubMed ID: 23717388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different effects of light irradiation on the photosynthetic electron transport chain during apple tree leaf dehydration.
    Li P; Ma F
    Plant Physiol Biochem; 2012 Jun; 55():16-22. PubMed ID: 22484842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Net light-induced oxygen evolution in photosystem I deletion mutants of the cyanobacterium Synechocystis sp. PCC 6803.
    Wang QJ; Singh A; Li H; Nedbal L; Sherman LA; Govindjee ; Whitmarsh J
    Biochim Biophys Acta; 2012 May; 1817(5):792-801. PubMed ID: 22266340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gymnosperms have increased capacity for electron leakage to oxygen (Mehler and PTOX reactions) in photosynthesis compared with angiosperms.
    Shirao M; Kuroki S; Kaneko K; Kinjo Y; Tsuyama M; Förster B; Takahashi S; Badger MR
    Plant Cell Physiol; 2013 Jul; 54(7):1152-63. PubMed ID: 23624674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loss of inhibition by formate in newly constructed photosystem II D1 mutants, D1-R257E and D1-R257M, of Chlamydomonas reinhardtii.
    Xiong J; Minagawa J; Crofts A; Govindjee
    Biochim Biophys Acta; 1998 Jul; 1365(3):473-91. PubMed ID: 9711300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum).
    Mathur S; Allakhverdiev SI; Jajoo A
    Biochim Biophys Acta; 2011 Jan; 1807(1):22-9. PubMed ID: 20840840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of herbicide binding on the redox potential of the quinone acceptor in photosystem II: relevance to photodamage and phytotoxicity.
    Krieger-Liszkay A; Rutherford AW
    Biochemistry; 1998 Dec; 37(50):17339-44. PubMed ID: 9860848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool.
    Ohad I; Dal Bosco C; Herrmann RG; Meurer J
    Biochemistry; 2004 Mar; 43(8):2297-308. PubMed ID: 14979726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variable thermal emission and chlorophyll fluorescence in photosystem II particles.
    Allakhverdiev SI; Klimov VV; Carpentier R
    Proc Natl Acad Sci U S A; 1994 Jan; 91(1):281-5. PubMed ID: 8278380
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A time-resolved FTIR difference study of the plastoquinone QA and redox-active tyrosine YZ interactions in photosystem II.
    Zhang H; Razeghifard MR; Fischer G; Wydrzynski T
    Biochemistry; 1997 Sep; 36(39):11762-8. PubMed ID: 9305966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light intensity dependent photosynthetic electron transport in eelgrass (Zostera marina L.).
    Yang XQ; Zhang QS; Zhang D; Sheng ZT
    Plant Physiol Biochem; 2017 Apr; 113():168-176. PubMed ID: 28236752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of plastoquinol oxidation by the Q-cycle in leaves.
    Laisk A; Oja V; Eichelmann H
    Biochim Biophys Acta; 2016 Jun; 1857(6):819-30. PubMed ID: 27056771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.