BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28936734)

  • 1. Exosomes as New Intercellular Mediators in Development and Therapeutics of Cardiomyocyte Hypertrophy.
    Huang Q; Cai B
    Adv Exp Med Biol; 2017; 998():91-100. PubMed ID: 28936734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes.
    Lyu L; Wang H; Li B; Qin Q; Qi L; Nagarkatti M; Nagarkatti P; Janicki JS; Wang XL; Cui T
    J Mol Cell Cardiol; 2015 Dec; 89(Pt B):268-79. PubMed ID: 26497614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy.
    Bang C; Batkai S; Dangwal S; Gupta SK; Foinquinos A; Holzmann A; Just A; Remke J; Zimmer K; Zeug A; Ponimaskin E; Schmiedl A; Yin X; Mayr M; Halder R; Fischer A; Engelhardt S; Wei Y; Schober A; Fiedler J; Thum T
    J Clin Invest; 2014 May; 124(5):2136-46. PubMed ID: 24743145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review.
    Zhang L; Xie F; Zhang F; Lu B
    Medicine (Baltimore); 2024 Apr; 103(17):e37994. PubMed ID: 38669371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Insights into the Role of Exosomes in the Heart After Myocardial Infarction.
    Li N; Rochette L; Wu Y; Rosenblatt-Velin N
    J Cardiovasc Transl Res; 2019 Feb; 12(1):18-27. PubMed ID: 30173401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exosomes Mediate the Intercellular Communication after Myocardial Infarction.
    Yuan MJ; Maghsoudi T; Wang T
    Int J Med Sci; 2016; 13(2):113-6. PubMed ID: 26941569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesenchymal Stem Cells and Cardiomyocytes Interplay to Prevent Myocardial Hypertrophy.
    Cai B; Tan X; Zhang Y; Li X; Wang X; Zhu J; Wang Y; Yang F; Wang B; Liu Y; Xu C; Pan Z; Wang N; Yang B; Lu Y
    Stem Cells Transl Med; 2015 Dec; 4(12):1425-35. PubMed ID: 26586774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibroblast-mediated pathways in cardiac hypertrophy.
    Fujiu K; Nagai R
    J Mol Cell Cardiol; 2014 May; 70():64-73. PubMed ID: 24492068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exosomes derived from cardiac fibroblasts with angiotensin II stimulation provoke hypertrophy and autophagy inhibition in cardiomyocytes.
    Xu ST; Zhang YX; Liu SL; Liu F; Ye JT
    Biochem Biophys Res Commun; 2023 Nov; 682():199-206. PubMed ID: 37826943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exosomes Derived From Hypertrophic Cardiomyocytes Induce Inflammation in Macrophages
    Yu H; Qin L; Peng Y; Bai W; Wang Z
    Front Immunol; 2020; 11():606045. PubMed ID: 33613526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac Progenitor-Cell Derived Exosomes as Cell-Free Therapeutic for Cardiac Repair.
    Mol EA; Goumans MJ; Sluijter JPG
    Adv Exp Med Biol; 2017; 998():207-219. PubMed ID: 28936742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone marrow mesenchymal stem cell-derived exosomes attenuate cardiac hypertrophy and fibrosis in pressure overload induced remodeling.
    Chen F; Li X; Zhao J; Geng J; Xie J; Xu B
    In Vitro Cell Dev Biol Anim; 2020 Aug; 56(7):567-576. PubMed ID: 32748023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urotensin-II-mediated cardiomyocyte hypertrophy: effect of receptor antagonism and role of inflammatory mediators.
    Johns DG; Ao Z; Naselsky D; Herold CL; Maniscalco K; Sarov-Blat L; Steplewski K; Aiyar N; Douglas SA
    Naunyn Schmiedebergs Arch Pharmacol; 2004 Oct; 370(4):238-50. PubMed ID: 15549273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional crosstalk between cardiac fibroblasts and adult cardiomyocytes by soluble mediators.
    Cartledge JE; Kane C; Dias P; Tesfom M; Clarke L; Mckee B; Al Ayoubi S; Chester A; Yacoub MH; Camelliti P; Terracciano CM
    Cardiovasc Res; 2015 Mar; 105(3):260-70. PubMed ID: 25560320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory RNAs and paracrine networks in the heart.
    Viereck J; Bang C; Foinquinos A; Thum T
    Cardiovasc Res; 2014 May; 102(2):290-301. PubMed ID: 24562768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy.
    Indolfi C; Curcio A
    J Clin Invest; 2014 May; 124(5):1896-8. PubMed ID: 24743143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myocyte-Derived Hsp90 Modulates Collagen Upregulation via Biphasic Activation of STAT-3 in Fibroblasts during Cardiac Hypertrophy.
    Datta R; Bansal T; Rana S; Datta K; Datta Chaudhuri R; Chawla-Sarkar M; Sarkar S
    Mol Cell Biol; 2017 Mar; 37(6):. PubMed ID: 28031326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microvesicles and exosomes for intracardiac communication.
    Sluijter JP; Verhage V; Deddens JC; van den Akker F; Doevendans PA
    Cardiovasc Res; 2014 May; 102(2):302-11. PubMed ID: 24488559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic Potential of Hematopoietic Stem Cell-Derived Exosomes in Cardiovascular Disease.
    Radosinska J; Bartekova M
    Adv Exp Med Biol; 2017; 998():221-235. PubMed ID: 28936743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardioprotective Effects of Exosomes and Their Potential Therapeutic Use.
    Ding S; Zhang J; Dai Q; Zhao M; Huang H; Xu Y; Zhong C
    Adv Exp Med Biol; 2017; 998():163-177. PubMed ID: 28936739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.