These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 28936766)
1. Use of Lactobacilli in Cereal-Legume Fermentation and as Potential Probiotics towards Phytate Hydrolysis. Amritha GK; Venkateswaran G Probiotics Antimicrob Proteins; 2018 Dec; 10(4):647-653. PubMed ID: 28936766 [TBL] [Abstract][Full Text] [Related]
2. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. Castro-Alba V; Lazarte CE; Perez-Rea D; Carlsson NG; Almgren A; Bergenståhl B; Granfeldt Y J Sci Food Agric; 2019 Aug; 99(11):5239-5248. PubMed ID: 31062366 [TBL] [Abstract][Full Text] [Related]
3. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. Reale A; Konietzny U; Coppola R; Sorrentino E; Greiner R J Agric Food Chem; 2007 Apr; 55(8):2993-7. PubMed ID: 17373819 [TBL] [Abstract][Full Text] [Related]
4. Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread. García-Mantrana I; Yebra MJ; Haros M; Monedero V Int J Food Microbiol; 2016 Jan; 216():18-24. PubMed ID: 26384212 [TBL] [Abstract][Full Text] [Related]
5. Selection and use of phytate-degrading LAB to improve cereal-based products by mineral solubilization during dough fermentation. Anastasio M; Pepe O; Cirillo T; Palomba S; Blaiotta G; Villani F J Food Sci; 2010; 75(1):M28-35. PubMed ID: 20492182 [TBL] [Abstract][Full Text] [Related]
6. Partial characterization and purification of phytase from Lactobacillus plantarum CRL1964 isolated from pseudocereals. Sandez Penidez SH; Velasco Manini MA; Gerez CL; Rollán GC J Basic Microbiol; 2020 Sep; 60(9):787-798. PubMed ID: 33448445 [TBL] [Abstract][Full Text] [Related]
7. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions. Nielsen AV; Meyer AS J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688 [TBL] [Abstract][Full Text] [Related]
8. Reduction of Phytate in Soy Drink by Fermentation with Lactobacillus casei Expressing Phytases From Bifidobacteria. García-Mantrana I; Monedero V; Haros M Plant Foods Hum Nutr; 2015 Sep; 70(3):269-74. PubMed ID: 26003176 [TBL] [Abstract][Full Text] [Related]
9. Degradation of phytate by Pichia kudriavzevii TY13 and Hanseniaspora guilliermondii TY14 in Tanzanian togwa. Hellström AM; Almgren A; Carlsson NG; Svanberg U; Andlid TA Int J Food Microbiol; 2012 Feb; 153(1-2):73-7. PubMed ID: 22112916 [TBL] [Abstract][Full Text] [Related]
10. The effect of food processing on phytate hydrolysis and availability of iron and zinc. Sandberg AS Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732 [TBL] [Abstract][Full Text] [Related]
11. Novel phytases from Bifidobacterium pseudocatenulatum ATCC 27919 and Bifidobacterium longum subsp. infantis ATCC 15697. Tamayo-Ramos JA; Sanz-Penella JM; Yebra MJ; Monedero V; Haros M Appl Environ Microbiol; 2012 Jul; 78(14):5013-5. PubMed ID: 22582052 [TBL] [Abstract][Full Text] [Related]
12. Phytate degradation by human gut isolated Bifidobacterium pseudocatenulatum ATCC27919 and its probiotic potential. Haros M; Carlsson NG; Almgren A; Larsson-Alminger M; Sandberg AS; Andlid T Int J Food Microbiol; 2009 Sep; 135(1):7-14. PubMed ID: 19674804 [TBL] [Abstract][Full Text] [Related]
13. Phytase activity from Lactobacillus spp. in calcium-fortified soymilk. Tang AL; Wilcox G; Walker KZ; Shah NP; Ashton JF; Stojanovska L J Food Sci; 2010 Aug; 75(6):M373-6. PubMed ID: 20722939 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of phytate-degrading Lactobacillus culture administration to broiler chickens. Askelson TE; Campasino A; Lee JT; Duong T Appl Environ Microbiol; 2014 Feb; 80(3):943-50. PubMed ID: 24271165 [TBL] [Abstract][Full Text] [Related]
15. Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study. Reale A; Mannina L; Tremonte P; Sobolev AP; Succi M; Sorrentino E; Coppola R J Agric Food Chem; 2004 Oct; 52(20):6300-5. PubMed ID: 15453704 [TBL] [Abstract][Full Text] [Related]
16. Functional characterization of Lactobacillus plantarum ITEM 17215: A potential biocontrol agent of fungi with plant growth promoting traits, able to enhance the nutritional value of cereal products. Quattrini M; Bernardi C; Stuknytė M; Masotti F; Passera A; Ricci G; Vallone L; De Noni I; Brasca M; Fortina MG Food Res Int; 2018 Apr; 106():936-944. PubMed ID: 29580007 [TBL] [Abstract][Full Text] [Related]
17. Potential of phytase-mediated iron release from cereal-based foods: a quantitative view. Nielsen AV; Tetens I; Meyer AS Nutrients; 2013 Aug; 5(8):3074-98. PubMed ID: 23917170 [TBL] [Abstract][Full Text] [Related]
18. Probiotic properties of a phytase producing Pediococcus acidilactici strain SMVDUDB2 isolated from traditional fermented cheese product, Kalarei. Bhagat D; Raina N; Kumar A; Katoch M; Khajuria Y; Slathia PS; Sharma P Sci Rep; 2020 Feb; 10(1):1926. PubMed ID: 32024895 [TBL] [Abstract][Full Text] [Related]
19. A novel purple acid phytase from an earthworm cast bacterium. Ghorbani Nasrabadi R; Greiner R; Yamchi A; Nourzadeh Roshan E J Sci Food Agric; 2018 Aug; 98(10):3667-3674. PubMed ID: 29266239 [TBL] [Abstract][Full Text] [Related]
20. The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin. Brejnholt SM; Dionisio G; Glitsoe V; Skov LK; Brinch-Pedersen H J Sci Food Agric; 2011 Jun; 91(8):1398-405. PubMed ID: 21387323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]