These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2893678)

  • 1. Receptor turnover and the action of 5-hydroxytryptamine on the salivary glands of the blowfly Calliphora erythrocephala, the housefly Musca domestica and frog skin epithelium.
    Dalton T
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1987; 88(2):233-9. PubMed ID: 2893678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina.
    Röser C; Jordan N; Balfanz S; Baumann A; Walz B; Baumann O; Blenau W
    PLoS One; 2012; 7(11):e49459. PubMed ID: 23145175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the cyclic AMP pathway promotes serotonin-induced Ca2+ oscillations in salivary glands of the blowfly Calliphora vicina.
    Fechner L; Baumann O; Walz B
    Cell Calcium; 2013 Feb; 53(2):94-101. PubMed ID: 23131569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of polyphosphoinositide metabolism to the hormonal activation of the inset salivary gland by 5-hydroxytryptamine.
    Berridge MJ; Buchan PB; Heslop JP
    Mol Cell Endocrinol; 1984 Jun; 36(1-2):37-42. PubMed ID: 6086423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane permeability changes during stimulation of isolated salivary glands of Calliphora by 5-hydroxytryptamine.
    Berridge MJ; Lindley BD; Prince WT
    J Physiol; 1975 Jan; 244(3):549-67. PubMed ID: 1133770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism mediating regenerative intercellular Ca2+ waves in the blowfly salivary gland.
    Zimmermann B; Walz B
    EMBO J; 1999 Jun; 18(12):3222-31. PubMed ID: 10369663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serotonin-induced intercellular calcium waves in salivary glands of the blowfly Calliphora erythrocephala.
    Zimmermann B; Walz B
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):17-28. PubMed ID: 9097929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine.
    Berridge MJ; Fain JN
    Biochem J; 1979 Jan; 178(1):59-69. PubMed ID: 435285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between phosphatidylinositol synthesis and recovery of 5-hydroxytryptamine-responsive Ca2+ flux in blowfly salivary glands.
    Fain JN; Berridge MJ
    Biochem J; 1979 Jun; 180(3):655-61. PubMed ID: 486139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological evidence for the existence of separate receptor mechanisms mediating the action of 5-hydroxytryptamine.
    Berridge MJ
    Mol Cell Endocrinol; 1981 Jul; 23(1):91-104. PubMed ID: 6266901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcineurin is part of a negative feedback loop in the InsP3/Ca²⁺ signalling pathway in blowfly salivary glands.
    Heindorff K; Baumann O
    Cell Calcium; 2014 Sep; 56(3):215-24. PubMed ID: 25108568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland.
    Fain JN; Berridge MJ
    Biochem J; 1979 Jan; 178(1):45-58. PubMed ID: 219851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-HT-stimulated arachidonic acid release from labeled phosphatidylinositol in blowfly salivary glands.
    Litosch I; Saito Y; Fain JN
    Am J Physiol; 1982 Nov; 243(5):C222-6. PubMed ID: 6814261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular pH homeostasis and serotonin-induced pH changes in Calliphora salivary glands: the contribution of V-ATPase and carbonic anhydrase.
    Schewe B; Schmälzlin E; Walz B
    J Exp Biol; 2008 Mar; 211(Pt 5):805-15. PubMed ID: 18281344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in cyclic AMP and cyclic GMP concentrations during the action of 5-hydroxytryptamine on an insect salivary gland.
    Heslop JP; Berridge MJ
    Biochem J; 1980 Oct; 192(1):247-55. PubMed ID: 6272697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein metabolism by the salivary glands and other organs of the larva of the blowfly, Calliphora erythrocephala.
    Price GM
    J Insect Physiol; 1974 Feb; 20(2):329-47. PubMed ID: 4815640
    [No Abstract]   [Full Text] [Related]  

  • 17. Phosphatidylinositol-hydrolysing enzymes in blowfly salivary glands.
    Irvine RF; Berridge MJ; Letcher AJ; Dawson RM
    Biochem J; 1982 Apr; 204(1):361-4. PubMed ID: 6288018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 5-Hydroxytryptamine stimulation of phosphatidylinositol hydrolysis and calcium signalling in the blowfly salivary gland.
    Berridge MJ
    Cell Calcium; 1982 Oct; 3(4-5):385-97. PubMed ID: 6891617
    [No Abstract]   [Full Text] [Related]  

  • 19. Relationship between latency and period for 5-hydroxytryptamine-induced membrane responses in the Calliphora salivary gland.
    Berridge MJ
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):545-50. PubMed ID: 8093009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium store depletion activates two distinct calcium entry pathways in secretory cells of the blowfly salivary gland.
    Zimmermann B
    Cell Calcium; 1998 Jan; 23(1):53-63. PubMed ID: 9570010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.