These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28936866)

  • 1. Light-Trapping Characteristics of Ag Nanoparticles for Enhancing the Energy Conversion Efficiency of Hybrid Solar Cells.
    Fan Z; Zhang W; Ma Q; Yan L; Xu L; Fu Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35998-36008. PubMed ID: 28936866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal design of an antireflection coating structure for enhancing the energy-conversion efficiency of a silicon nanostructure solar cell.
    Fan Q; Wang Z; Cui Y
    RSC Adv; 2018 Oct; 8(61):34793-34807. PubMed ID: 35547089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High efficiency silicon nanowire/organic hybrid solar cells with two-step surface treatment.
    Wang J; Wang H; Prakoso AB; Togonal AS; Hong L; Jiang C; Rusli
    Nanoscale; 2015 Mar; 7(10):4559-65. PubMed ID: 25686737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS.
    Sharma M; Pudasaini PR; Ruiz-Zepeda F; Elam D; Ayon AA
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4356-63. PubMed ID: 24568116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thin Film Silicon Nanowire/PEDOT:PSS Hybrid Solar Cells with Surface Treatment.
    Wang H; Wang J; Hong L; Tan YH; Tan CS; Rusli
    Nanoscale Res Lett; 2016 Dec; 11(1):311. PubMed ID: 27356558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced power conversion efficiency of an n-Si/PEDOT:PSS hybrid solar cell using nanostructured silicon and gold nanoparticles.
    Van Trinh P; Anh NN; Cham NT; Tu LT; Van Hao N; Thang BH; Van Chuc N; Thanh CT; Minh PN; Fukata N
    RSC Adv; 2022 Mar; 12(17):10514-10521. PubMed ID: 35424997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substantial Improvement of Short Wavelength Response in n-SiNW/PEDOT:PSS Solar Cell.
    Ge Z; Xu L; Cao Y; Wu T; Song H; Ma Z; Xu J; Chen K
    Nanoscale Res Lett; 2015 Dec; 10(1):998. PubMed ID: 26283449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Pressure-Assisted Coating Method To Improve Interface between PEDOT:PSS and Silicon Nanotips for High-Efficiency Organic/Inorganic Hybrid Solar Cells via Solution Process.
    Subramani T; Syu HJ; Liu CT; Hsueh CC; Yang ST; Lin CF
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2406-15. PubMed ID: 26717020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays.
    Sato K; Dutta M; Fukata N
    Nanoscale; 2014 Jun; 6(11):6092-101. PubMed ID: 24789210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.
    Shen X; Sun B; Liu D; Lee ST
    J Am Chem Soc; 2011 Dec; 133(48):19408-15. PubMed ID: 22035274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing light trapping properties of thin film solar cells by plasmonic effect of silver nanoparticles.
    Jung J; Ha K; Cho J; Ahn S; Park H; Hussain SQ; Choi M; Yi J
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7860-4. PubMed ID: 24266153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells.
    Lu W; Wang C; Yue W; Chen L
    Nanoscale; 2011 Sep; 3(9):3631-4. PubMed ID: 21845258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Efficiency of Silicon Nanoholes/Gold Nanoparticles/Organic Hybrid Solar Cells via Localized Surface Plasmon Resonance.
    Lu R; Xu L; Ge Z; Li R; Xu J; Yu L; Chen K
    Nanoscale Res Lett; 2016 Dec; 11(1):160. PubMed ID: 27003428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Si nanocones/PEDOT:PSS solar cell.
    Wang H; Wang J; Rusli ᅟ
    Nanoscale Res Lett; 2015; 10():191. PubMed ID: 25977662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.
    Kim RS; Zhu J; Park JH; Li L; Yu Z; Shen H; Xue M; Wang KL; Park G; Anderson TJ; Pei Q
    Opt Express; 2012 Jun; 20(12):12649-57. PubMed ID: 22714293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.
    Sharma M; Pudasaini PR; Ruiz-Zepeda F; Vinogradova E; Ayon AA
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15472-9. PubMed ID: 25137194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application.
    Zhang F; Song T; Sun B
    Nanotechnology; 2012 May; 23(19):194006. PubMed ID: 22538992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thickness-modulated passivation properties of PEDOT:PSS layers over crystalline silicon wafers in back junction organic/silicon solar cells.
    Zhang L; Wang Z; Lin H; Wang W; Wang J; Zhang H; Sheng J; Wu S; Gao P; Ye J; Yu T
    Nanotechnology; 2019 May; 30(19):195401. PubMed ID: 30673648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale Study of Plasmonic Scattering and Light Trapping Effect in Silicon Nanowire Array Solar Cells.
    Meng L; Zhang Y; Yam C
    J Phys Chem Lett; 2017 Feb; 8(3):571-575. PubMed ID: 28076951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient light trapping in inverted polymer solar cells by a randomly nanostructured electrode using monodispersed polymer nanoparticles.
    Kang DJ; Kang H; Cho C; Kim KH; Jeong S; Lee JY; Kim BJ
    Nanoscale; 2013 Mar; 5(5):1858-63. PubMed ID: 23338854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.