These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 28936918)
1. Amino acid residues critical for DNA binding and inducer recognition in CbnR, a LysR-type transcriptional regulator from Cupriavidus necator NH9. Moriuchi R; Takada K; Takabayashi M; Yamamoto Y; Shimodaira J; Kuroda N; Akiyama E; Udagawa M; Minai R; Fukuda M; Senda T; Ogawa N Biosci Biotechnol Biochem; 2017 Nov; 81(11):2119-2129. PubMed ID: 28936918 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of the DNA-binding domain of the LysR-type transcriptional regulator CbnR in complex with a DNA fragment of the recognition-binding site in the promoter region. Koentjoro MP; Adachi N; Senda M; Ogawa N; Senda T FEBS J; 2018 Mar; 285(5):977-989. PubMed ID: 29323785 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9. Ogawa N; McFall SM; Klem TJ; Miyashita K; Chakrabarty AM J Bacteriol; 1999 Nov; 181(21):6697-705. PubMed ID: 10542171 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of the full-length LysR-type transcription regulator CbnR in complex with promoter DNA. Giannopoulou EA; Senda M; Koentjoro MP; Adachi N; Ogawa N; Senda T FEBS J; 2021 Aug; 288(15):4560-4575. PubMed ID: 33576566 [TBL] [Abstract][Full Text] [Related]
5. Purification and crystallization of a LysR-type transcriptional regulator CBNR from Ralstonia eutropha NH9. Muraoka S; Okumura R; Uragami Y; Nonaka T; Ogawa N; Miyashita K; Senda T Protein Pept Lett; 2003 Jun; 10(3):325-9. PubMed ID: 12871153 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of a full-length LysR-type transcriptional regulator, CbnR: unusual combination of two subunit forms and molecular bases for causing and changing DNA bend. Muraoka S; Okumura R; Ogawa N; Nonaka T; Miyashita K; Senda T J Mol Biol; 2003 May; 328(3):555-66. PubMed ID: 12706716 [TBL] [Abstract][Full Text] [Related]
7. Amino acid substitutions in the transcriptional regulator CbbR lead to constitutively active CbbR proteins that elevate expression of the cbb CO2 fixation operons in Ralstonia eutropha (Cupriavidus necator) and identify regions of CbbR necessary for gene activation. Dangel AW; Tabita FR Microbiology (Reading); 2015 Sep; 161(9):1816-1829. PubMed ID: 26296349 [TBL] [Abstract][Full Text] [Related]
8. Mutational analysis of the inducer recognition sites of the LysR-type transcriptional regulator TfdT of Burkholderia sp. NK8. Lang GH; Ogawa N Appl Microbiol Biotechnol; 2009 Jul; 83(6):1085-94. PubMed ID: 19319522 [TBL] [Abstract][Full Text] [Related]
9. NahR: effects of replacements at Asn 169 and Arg 248 on promoter binding and inducer recognition. Park HH; Lee HY; Lim WK; Shin HJ Arch Biochem Biophys; 2005 Feb; 434(1):67-74. PubMed ID: 15629110 [TBL] [Abstract][Full Text] [Related]
10. Involvement of several transcriptional regulators in the differential expression of tfd genes in Cupriavidus necator JMP134. Trefault N; Guzmán L; Pérez H; Godoy M; González B Int Microbiol; 2009 Jun; 12(2):97-106. PubMed ID: 19784929 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of ArgP from Mycobacterium tuberculosis confirms two distinct conformations of full-length LysR transcriptional regulators and reveals its function in DNA binding and transcriptional regulation. Zhou X; Lou Z; Fu S; Yang A; Shen H; Li Z; Feng Y; Bartlam M; Wang H; Rao Z J Mol Biol; 2010 Mar; 396(4):1012-24. PubMed ID: 20036253 [TBL] [Abstract][Full Text] [Related]
12. Inducer responses of BenM, a LysR-type transcriptional regulator from Acinetobacter baylyi ADP1. Craven SH; Ezezika OC; Haddad S; Hall RA; Momany C; Neidle EL Mol Microbiol; 2009 May; 72(4):881-94. PubMed ID: 19400783 [TBL] [Abstract][Full Text] [Related]
13. Functional dissection of the LysR-type CysB transcriptional regulator. Regions important for DNA binding, inducer response, oligomerization, and positive control. Lochowska A; Iwanicka-Nowicka R; Plochocka D; Hryniewicz MM J Biol Chem; 2001 Jan; 276(3):2098-107. PubMed ID: 11038360 [TBL] [Abstract][Full Text] [Related]
14. Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognition. Dangel AW; Gibson JL; Janssen AP; Tabita FR Mol Microbiol; 2005 Sep; 57(5):1397-414. PubMed ID: 16102008 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome differences between Cupriavidus necator NH9 grown with 3-chlorobenzoate and that grown with benzoate. Moriuchi R; Dohra H; Kanesaki Y; Ogawa N Biosci Biotechnol Biochem; 2021 May; 85(6):1546-1561. PubMed ID: 33720310 [TBL] [Abstract][Full Text] [Related]
16. Structural studies on the full-length LysR-type regulator TsaR from Comamonas testosteroni T-2 reveal a novel open conformation of the tetrameric LTTR fold. Monferrer D; Tralau T; Kertesz MA; Dix I; Solà M; Usón I Mol Microbiol; 2010 Mar; 75(5):1199-214. PubMed ID: 20059681 [TBL] [Abstract][Full Text] [Related]
17. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Maddocks SE; Oyston PCF Microbiology (Reading); 2008 Dec; 154(Pt 12):3609-3623. PubMed ID: 19047729 [TBL] [Abstract][Full Text] [Related]
18. Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator. Ezezika OC; Haddad S; Clark TJ; Neidle EL; Momany C J Mol Biol; 2007 Mar; 367(3):616-29. PubMed ID: 17291527 [TBL] [Abstract][Full Text] [Related]
19. Molecular genetics and biochemistry of N-acetyltaurine degradation by Cupriavidus necator H16. Denger K; Lehmann S; Cook AM Microbiology (Reading); 2011 Oct; 157(Pt 10):2983-2991. PubMed ID: 21757489 [TBL] [Abstract][Full Text] [Related]
20. DbdR, a New Member of the LysR Family of Transcriptional Regulators, Coordinately Controls Four Promoters in the Thauera aromatica AR-1 3,5-Dihydroxybenzoate Anaerobic Degradation Pathway. Pacheco-Sánchez D; Molina-Fuentes Á; Marín P; Díaz-Romero A; Marqués S Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30389770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]