These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 28936918)
21. Factors that influence the response of the LysR type transcriptional regulators to aromatic compounds. Lönneborg R; Brzezinski P BMC Biochem; 2011 Sep; 12():49. PubMed ID: 21884597 [TBL] [Abstract][Full Text] [Related]
22. Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production. Orita I; Iwazawa R; Nakamura S; Fukui T J Biosci Bioeng; 2012 Jan; 113(1):63-9. PubMed ID: 22014784 [TBL] [Abstract][Full Text] [Related]
23. Phosphoenolpyruvate is a signal metabolite in transcriptional control of the cbb CO2 fixation operons in Ralstonia eutropha. Grzeszik C; Jeffke T; Schäferjohann J; Kusian B; Bowien B J Mol Microbiol Biotechnol; 2000 Jul; 2(3):311-20. PubMed ID: 10937440 [TBL] [Abstract][Full Text] [Related]
24. Structures of the inducer-binding domain of pentachlorophenol-degrading gene regulator PcpR from Sphingobium chlorophenolicum. Hayes RP; Moural TW; Lewis KM; Onofrei D; Xun L; Kang C Int J Mol Sci; 2014 Nov; 15(11):20736-52. PubMed ID: 25397598 [TBL] [Abstract][Full Text] [Related]
25. Identification of residues critical for the function of the Vibrio cholerae virulence regulator ToxT by scanning alanine mutagenesis. Childers BM; Weber GG; Prouty MG; Castaneda MM; Peng F; Klose KE J Mol Biol; 2007 Apr; 367(5):1413-30. PubMed ID: 17320105 [TBL] [Abstract][Full Text] [Related]
26. Vibrio cholerae AphA uses a novel mechanism for virulence gene activation that involves interaction with the LysR-type regulator AphB at the tcpPH promoter. Kovacikova G; Lin W; Skorupski K Mol Microbiol; 2004 Jul; 53(1):129-42. PubMed ID: 15225309 [TBL] [Abstract][Full Text] [Related]
27. Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers. Cebolla A; Sousa C; de Lorenzo V J Biol Chem; 1997 Feb; 272(7):3986-92. PubMed ID: 9020104 [TBL] [Abstract][Full Text] [Related]
28. Amino acids in positions 48, 52, and 73 differentiate the substrate specificities of the highly homologous chlorocatechol 1,2-dioxygenases CbnA and TcbC. Liu S; Ogawa N; Senda T; Hasebe A; Miyashita K J Bacteriol; 2005 Aug; 187(15):5427-36. PubMed ID: 16030237 [TBL] [Abstract][Full Text] [Related]
29. Functional Genetic Elements for Controlling Gene Expression in Cupriavidus necator H16. Alagesan S; Hanko EKR; Malys N; Ehsaan M; Winzer K; Minton NP Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30030234 [TBL] [Abstract][Full Text] [Related]
30. Genetics and control of CO(2) assimilation in the chemoautotroph Ralstonia eutropha. Bowien B; Kusian B Arch Microbiol; 2002 Aug; 178(2):85-93. PubMed ID: 12115053 [TBL] [Abstract][Full Text] [Related]
31. Characterization of the pleiotropic LysR-type transcription regulator LeuO of Escherichia coli. Fragel SM; Montada A; Heermann R; Baumann U; Schacherl M; Schnetz K Nucleic Acids Res; 2019 Aug; 47(14):7363-7379. PubMed ID: 31184713 [TBL] [Abstract][Full Text] [Related]
32. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model. Oliver P; Peralta-Gil M; Tabche ML; Merino E BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672 [TBL] [Abstract][Full Text] [Related]
33. Hexameric structure of the flagellar master regulator FlhDC from Cupriavidus necator and its interaction with flagellar promoter DNA. Cho SY; Oh HB; Yoon SI Biochem Biophys Res Commun; 2023 Sep; 672():97-102. PubMed ID: 37343320 [TBL] [Abstract][Full Text] [Related]
34. Development of a plasmid-based, tunable, tolC-derived expression system for application in Cupriavidus necator H16. Aboulnaga EA; Zou H; Selmer T; Xian M J Biotechnol; 2018 May; 274():15-27. PubMed ID: 29549002 [TBL] [Abstract][Full Text] [Related]
35. Novel substitutions in the sigma54-dependent activator DctD that increase dependence on upstream activation sequences or uncouple ATP hydrolysis from transcriptional activation. Xu H; Kelly MT; Nixon BT; Hoover TR Mol Microbiol; 2004 Oct; 54(1):32-44. PubMed ID: 15458403 [TBL] [Abstract][Full Text] [Related]
36. Pivotal roles for the receiver domain in the mechanism of action of the response regulator RamR of Streptomyces coelicolor. O'Connor TJ; Nodwell JR J Mol Biol; 2005 Sep; 351(5):1030-47. PubMed ID: 16051268 [TBL] [Abstract][Full Text] [Related]
37. The Structure of the LysR-type Transcriptional Regulator, CysB, Bound to the Inducer, N-acetylserine. Verschueren KHG; Dodson EJ; Wilkinson AJ Eur Biophys J; 2024 Aug; 53(5-6):311-326. PubMed ID: 38976018 [TBL] [Abstract][Full Text] [Related]
38. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. Pérez-Pantoja D; De la Iglesia R; Pieper DH; González B FEMS Microbiol Rev; 2008 Aug; 32(5):736-94. PubMed ID: 18691224 [TBL] [Abstract][Full Text] [Related]
39. Constitutive mutations of the OccR regulatory protein affect DNA bending in response to metabolites released from plant tumors. Akakura R; Winans SC J Biol Chem; 2002 Feb; 277(8):5866-74. PubMed ID: 11717314 [TBL] [Abstract][Full Text] [Related]
40. Identification of activating region (AR) of Escherichia coli LysR-type transcription factor CysB and CysB contact site on RNA polymerase alpha subunit at the cysP promoter. Lochowska A; Iwanicka-Nowicka R; Zaim J; Witkowska-Zimny M; Bolewska K; Hryniewicz MM Mol Microbiol; 2004 Aug; 53(3):791-806. PubMed ID: 15255893 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]