These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 28936979)
1. Advances of selectable marker genes in plastid genetic engineering. He Y; Luo A; Mu LS; Chen Q; Zhang Y; Yeh KW; Tian ZH Yi Chuan; 2017 Sep; 39(9):810-827. PubMed ID: 28936979 [TBL] [Abstract][Full Text] [Related]
2. Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Klaus SM; Huang FC; Golds TJ; Koop HU Nat Biotechnol; 2004 Feb; 22(2):225-9. PubMed ID: 14730316 [TBL] [Abstract][Full Text] [Related]
3. Transgenic plastids in basic research and plant biotechnology. Bock R J Mol Biol; 2001 Sep; 312(3):425-38. PubMed ID: 11563907 [TBL] [Abstract][Full Text] [Related]
4. Challenges and perspectives in commercializing plastid transformation technology. Ahmad N; Michoux F; Lössl AG; Nixon PJ J Exp Bot; 2016 Nov; 67(21):5945-5960. PubMed ID: 27697788 [TBL] [Abstract][Full Text] [Related]
5. Rescue of Deletion Mutants to Isolate Plastid Transformants in Higher Plants. El Hajj M; Hamdan MFB; Avila EM; Day A Methods Mol Biol; 2018; 1829():325-339. PubMed ID: 29987732 [TBL] [Abstract][Full Text] [Related]
6. Construction of marker-free transplastomic plants. Lutz KA; Maliga P Curr Opin Biotechnol; 2007 Apr; 18(2):107-14. PubMed ID: 17339108 [TBL] [Abstract][Full Text] [Related]
7. A bifunctional aminoglycoside acetyltransferase/phosphotransferase conferring tobramycin resistance provides an efficient selectable marker for plastid transformation. Tabatabaei I; Ruf S; Bock R Plant Mol Biol; 2017 Feb; 93(3):269-281. PubMed ID: 27858324 [TBL] [Abstract][Full Text] [Related]
8. Plastid Transformation in Poplar: A Model for Perennial Trees. Wu Y; Chang L; Jiang C; Xu L; Zhang J Methods Mol Biol; 2021; 2317():257-265. PubMed ID: 34028774 [TBL] [Abstract][Full Text] [Related]
9. The chloroplast transformation toolbox: selectable markers and marker removal. Day A; Goldschmidt-Clermont M Plant Biotechnol J; 2011 Jun; 9(5):540-53. PubMed ID: 21426476 [TBL] [Abstract][Full Text] [Related]
10. Genetic engineering of the chloroplast: novel tools and new applications. Bock R Curr Opin Biotechnol; 2014 Apr; 26():7-13. PubMed ID: 24679252 [TBL] [Abstract][Full Text] [Related]
11. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Kumar S; Dhingra A; Daniell H Plant Mol Biol; 2004 Sep; 56(2):203-16. PubMed ID: 15604738 [TBL] [Abstract][Full Text] [Related]
12. Removal of antibiotic resistance genes from transgenic tobacco plastids. Iamtham S; Day A Nat Biotechnol; 2000 Nov; 18(11):1172-6. PubMed ID: 11062436 [TBL] [Abstract][Full Text] [Related]
13. Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges. Meyers B; Zaltsman A; Lacroix B; Kozlovsky SV; Krichevsky A Biotechnol Adv; 2010; 28(6):747-56. PubMed ID: 20685387 [TBL] [Abstract][Full Text] [Related]
14. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Bock R Annu Rev Plant Biol; 2015; 66():211-41. PubMed ID: 25494465 [TBL] [Abstract][Full Text] [Related]
15. Plastid marker gene excision by the phiC31 phage site-specific recombinase. Kittiwongwattana C; Lutz K; Clark M; Maliga P Plant Mol Biol; 2007 May; 64(1-2):137-43. PubMed ID: 17294253 [TBL] [Abstract][Full Text] [Related]
16. Marker-Free Transplastomic Plants by Excision of Plastid Marker Genes Using Directly Repeated DNA Sequences. Mudd EA; Madesis P; Avila EM; Day A Methods Mol Biol; 2021; 2317():95-107. PubMed ID: 34028764 [TBL] [Abstract][Full Text] [Related]