These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 28936981)
21. Synergistic regulation of drought-responsive genes by transcription factor OsbZIP23 and histone modification in rice. Zong W; Yang J; Fu J; Xiong L J Integr Plant Biol; 2020 Jun; 62(6):723-729. PubMed ID: 31199564 [TBL] [Abstract][Full Text] [Related]
22. Ectopic expression of PgRab7 in rice plants (Oryza sativa L.) results in differential tolerance at the vegetative and seed setting stage during salinity and drought stress. Tripathy MK; Tiwari BS; Reddy MK; Deswal R; Sopory SK Protoplasma; 2017 Jan; 254(1):109-124. PubMed ID: 26666551 [TBL] [Abstract][Full Text] [Related]
23. Punctual transcriptional regulation by the rice circadian clock under fluctuating field conditions. Matsuzaki J; Kawahara Y; Izawa T Plant Cell; 2015 Mar; 27(3):633-48. PubMed ID: 25757473 [TBL] [Abstract][Full Text] [Related]
24. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Quan R; Hu S; Zhang Z; Zhang H; Zhang Z; Huang R Plant Biotechnol J; 2010 May; 8(4):476-88. PubMed ID: 20233336 [TBL] [Abstract][Full Text] [Related]
25. Conserved expression profiles of circadian clock-related genes in two Lemna species showing long-day and short-day photoperiodic flowering responses. Miwa K; Serikawa M; Suzuki S; Kondo T; Oyama T Plant Cell Physiol; 2006 May; 47(5):601-12. PubMed ID: 16524874 [TBL] [Abstract][Full Text] [Related]
26. Dual function of clock component OsLHY sets critical day length for photoperiodic flowering in rice. Sun C; Zhang K; Zhou Y; Xiang L; He C; Zhong C; Li K; Wang Q; Yang C; Wang Q; Chen C; Chen D; Wang Y; Liu C; Yang B; Wu H; Chen X; Li W; Wang J; Xu P; Wang P; Fang J; Chu C; Deng X Plant Biotechnol J; 2021 Aug; 19(8):1644-1657. PubMed ID: 33740293 [TBL] [Abstract][Full Text] [Related]
27. Crosstalk between diurnal rhythm and water stress reveals an altered primary carbon flux into soluble sugars in drought-treated rice leaves. Kim SW; Lee SK; Jeong HJ; An G; Jeon JS; Jung KH Sci Rep; 2017 Aug; 7(1):8214. PubMed ID: 28811563 [TBL] [Abstract][Full Text] [Related]
28. The regulatory network mediated by circadian clock genes is related to heterosis in rice. Shen G; Hu W; Zhang B; Xing Y J Integr Plant Biol; 2015 Mar; 57(3):300-12. PubMed ID: 25040350 [TBL] [Abstract][Full Text] [Related]
30. CAST-R: An application to visualize circadian and heat stress-responsive genes in plants. Bonnot T; Gillard MB; Nagel DH Plant Physiol; 2022 Sep; 190(2):994-1004. PubMed ID: 35294034 [TBL] [Abstract][Full Text] [Related]
31. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.). Grondin A; Mauleon R; Vadez V; Henry A Plant Cell Environ; 2016 Feb; 39(2):347-65. PubMed ID: 26226878 [TBL] [Abstract][Full Text] [Related]
32. Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Ricachenevsky FK; Sperotto RA; Menguer PK; Fett JP Mol Biol Rep; 2010 Dec; 37(8):3735-45. PubMed ID: 20217243 [TBL] [Abstract][Full Text] [Related]
33. Genome-wide identification and analysis of Catharanthus roseus RLK1-like kinases in rice. Nguyen QN; Lee YS; Cho LH; Jeong HJ; An G; Jung KH Planta; 2015 Mar; 241(3):603-13. PubMed ID: 25399351 [TBL] [Abstract][Full Text] [Related]
34. Core clock, SUB1, and ABAR genes mediate flooding and drought responses via alternative splicing in soybean. Syed NH; Prince SJ; Mutava RN; Patil G; Li S; Chen W; Babu V; Joshi T; Khan S; Nguyen HT J Exp Bot; 2015 Dec; 66(22):7129-49. PubMed ID: 26314767 [TBL] [Abstract][Full Text] [Related]
35. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant's adaptation to drought condition. Zheng X; Chen L; Xia H; Wei H; Lou Q; Li M; Li T; Luo L Sci Rep; 2017 Jan; 7():39843. PubMed ID: 28051176 [TBL] [Abstract][Full Text] [Related]
36. OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B. Lee YS; Yi J; An G Plant Mol Biol; 2016 Jul; 91(4-5):413-27. PubMed ID: 27039184 [TBL] [Abstract][Full Text] [Related]
37. The rat cerebral vasculature exhibits time-of-day-dependent oscillations in circadian clock genes and vascular function that are attenuated following obstructive sleep apnea. Durgan DJ; Crossland RF; Bryan RM J Cereb Blood Flow Metab; 2017 Aug; 37(8):2806-2819. PubMed ID: 27798273 [TBL] [Abstract][Full Text] [Related]
39. Proteomic Responses to Drought Vary Widely Among Eight Diverse Genotypes of Rice ( Hamzelou S; Pascovici D; Kamath KS; Amirkhani A; McKay M; Mirzaei M; Atwell BJ; Haynes PA Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31935846 [TBL] [Abstract][Full Text] [Related]
40. Genetic Relationship Between Phytochromes and OsELF3-1 Reveals the Mode of Regulation for the Suppression of Phytochrome Signaling in Rice. Itoh H; Tanaka Y; Izawa T Plant Cell Physiol; 2019 Mar; 60(3):549-561. PubMed ID: 30476313 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]