These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28937161)

  • 1. Cold sprayed WO
    Haisch C; Schneider J; Fleisch M; Gutzmann H; Klassen T; Bahnemann DW
    Dalton Trans; 2017 Oct; 46(38):12811-12823. PubMed ID: 28937161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator.
    Oliveira HG; Ferreira LH; Bertazzoli R; Longo C
    Water Res; 2015 Apr; 72():305-14. PubMed ID: 25238917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WO3-enhanced TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment.
    Reyes-Gil KR; Robinson DB
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12400-10. PubMed ID: 24195676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Step Rapid and Scalable Flame Synthesis of Efficient WO
    Chen H; Bo R; Tran-Phu T; Liu G; Tricoli A
    Chempluschem; 2018 Jul; 83(7):569-576. PubMed ID: 31950641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient Photoelectrochemical Hydrogen Generation Using Zn(x)Bi2S(3+x) Sensitized Platelike WO₃ Photoelectrodes.
    Liu C; Yang Y; Li W; Li J; Li Y; Shi Q; Chen Q
    ACS Appl Mater Interfaces; 2015 May; 7(20):10763-70. PubMed ID: 25942616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of molybdenum doping on the structural, optical and electronic properties of WO
    Kalanur SS; Seo H
    J Colloid Interface Sci; 2018 Jan; 509():440-447. PubMed ID: 28923741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelectrocatalytic degradation of emerging contaminants at WO
    Cristino V; Pasti L; Marchetti N; Berardi S; Bignozzi CA; Molinari A; Passabi F; Caramori S; Amidani L; Orlandi M; Bazzanella N; Piccioni A; Kopula Kesavan J; Boscherini F; Pasquini L
    Photochem Photobiol Sci; 2019 Sep; 18(9):2150-2163. PubMed ID: 30931455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flame Synthesized Single Crystal Nanocolumn-Structured WO3 Thin Films for Photoelectrochemical Water Splitting.
    Ding JR; Kim KS
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1578-82. PubMed ID: 27433624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient visible light photocatalyst fabricated by depositing plasmonic Ag nanoparticles on conductive polymer-protected Si nanowire arrays for photoelectrochemical hydrogen generation.
    Duan C; Wang H; Ou X; Li F; Zhang X
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9742-50. PubMed ID: 24865360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO
    Momeni MM; Ghayeb Y; Ezati F
    J Colloid Interface Sci; 2018 Mar; 514():70-82. PubMed ID: 29245074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient photoelectrochemical water splitting by anodically grown WO3 electrodes.
    Cristino V; Caramori S; Argazzi R; Meda L; Marra GL; Bignozzi CA
    Langmuir; 2011 Jun; 27(11):7276-84. PubMed ID: 21542603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.
    Feng X; Chen Y; Qin Z; Wang M; Guo L
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18089-96. PubMed ID: 27347739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.
    Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W
    ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile and Large-Area Preparation of Porous Ag
    Cao Q; Yu J; Yuan K; Zhong M; Delaunay JJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19507-19512. PubMed ID: 28560876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CuWO4 Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for Photoelectrochemical Water Oxidation.
    Ye W; Chen F; Zhao F; Han N; Li Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9211-7. PubMed ID: 27011376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectrochemical oxidation of p-nitrophenol on an expanded graphite-TiO2 electrode.
    Ntsendwana B; Sampath S; Mamba BB; Arotiba OA
    Photochem Photobiol Sci; 2013 Jun; 12(6):1091-102. PubMed ID: 23591651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoporous tungsten oxide modified by nanolayered manganese-calcium oxide as robust photoanode for solar water splitting.
    Li K; Zhang C; Liu A; Chu D; Zhang C; Yang P; Du Y; Huang J
    J Colloid Interface Sci; 2018 Apr; 516():145-152. PubMed ID: 29367065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of WO3 Photoanodes to Ultraviolet Light Enhances Photoelectrochemical Water Oxidation.
    Li T; He J; Peña B; Berlinguette CP
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25010-3. PubMed ID: 27644107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.