These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 28937203)
61. Versatile plasmonic-effects at the interface of inverted perovskite solar cells. Shalan AE; Oshikiri T; Sawayanagi H; Nakamura K; Ueno K; Sun Q; Wu HP; Diau EW; Misawa H Nanoscale; 2017 Jan; 9(3):1229-1236. PubMed ID: 28050612 [TBL] [Abstract][Full Text] [Related]
62. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption. In S; Park N Sci Rep; 2016 Feb; 6():21784. PubMed ID: 26902974 [TBL] [Abstract][Full Text] [Related]
64. Investigation of Plasmonic-Enhanced Solar Photothermal Effect of Au NR@PVDF Micro-/Nanofilms. Ding S; Zhang J; Liu C; Li N; Zhang S; Wang Z; Xi M ACS Omega; 2022 Jun; 7(24):20750-20760. PubMed ID: 35755366 [TBL] [Abstract][Full Text] [Related]
65. Semitransparent Perovskite Solar Cells with > 13% Efficiency and 27% Transperancy Using Plasmonic Au Nanorods. Lie S; Bruno A; Wong LH; Etgar L ACS Appl Mater Interfaces; 2022 Mar; 14(9):11339-11349. PubMed ID: 35201744 [TBL] [Abstract][Full Text] [Related]
66. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications. Sharma M; Pudasaini PR; Ruiz-Zepeda F; Vinogradova E; Ayon AA ACS Appl Mater Interfaces; 2014 Sep; 6(17):15472-9. PubMed ID: 25137194 [TBL] [Abstract][Full Text] [Related]
68. Novel CdS Hole-Blocking Layer for Photostable Perovskite Solar Cells. Hwang I; Yong K ACS Appl Mater Interfaces; 2016 Feb; 8(6):4226-32. PubMed ID: 26809352 [TBL] [Abstract][Full Text] [Related]
69. High-Performance Long-Term-Stable Dopant-Free Perovskite Solar Cells and Additive-Free Organic Solar Cells by Employing Newly Designed Multirole π-Conjugated Polymers. Kranthiraja K; Gunasekar K; Kim H; Cho AN; Park NG; Kim S; Kim BJ; Nishikubo R; Saeki A; Song M; Jin SH Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28394431 [TBL] [Abstract][Full Text] [Related]
70. Accomplishment of Multifunctional π-Conjugated Polymers by Regulating the Degree of Side-Chain Fluorination for Efficient Dopant-Free Ambient-Stable Perovskite Solar Cells and Organic Solar Cells. Kranthiraja K; Park SH; Kim H; Gunasekar K; Han G; Kim BJ; Kim CS; Kim S; Lee H; Nishikubo R; Saeki A; Jin SH; Song M ACS Appl Mater Interfaces; 2017 Oct; 9(41):36053-36060. PubMed ID: 28948780 [TBL] [Abstract][Full Text] [Related]
71. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. Wu JL; Chen FC; Hsiao YS; Chien FC; Chen P; Kuo CH; Huang MH; Hsu CS ACS Nano; 2011 Feb; 5(2):959-67. PubMed ID: 21229960 [TBL] [Abstract][Full Text] [Related]
72. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures. Zhang R; Zhou Y; Peng L; Li X; Chen S; Feng X; Guan Y; Huang W Sci Rep; 2016 Apr; 6():25036. PubMed ID: 27125309 [TBL] [Abstract][Full Text] [Related]
73. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance. Yao M; Shen P; Liu Y; Chen B; Guo W; Ruan S; Shen L ACS Appl Mater Interfaces; 2016 Mar; 8(9):6183-9. PubMed ID: 26900763 [TBL] [Abstract][Full Text] [Related]
74. High-Efficiency Perovskite Quantum Dot Hybrid Nonfullerene Organic Solar Cells with Near-Zero Driving Force. Wang Y; Jia B; Wang J; Xue P; Xiao Y; Li T; Wang J; Lu H; Tang Z; Lu X; Huang F; Zhan X Adv Mater; 2020 Jul; 32(29):e2002066. PubMed ID: 32529680 [TBL] [Abstract][Full Text] [Related]
75. Dye Sensitization and Local Surface Plasmon Resonance-Enhanced Upconversion Luminescence for Efficient Perovskite Solar Cells. Bi W; Wu Y; Chen C; Zhou D; Song Z; Li D; Chen G; Dai Q; Zhu Y; Song H ACS Appl Mater Interfaces; 2020 Jun; 12(22):24737-24746. PubMed ID: 32379423 [TBL] [Abstract][Full Text] [Related]
76. Colloidal CuInS2 Quantum Dots as Inorganic Hole-Transporting Material in Perovskite Solar Cells. Lv M; Zhu J; Huang Y; Li Y; Shao Z; Xu Y; Dai S ACS Appl Mater Interfaces; 2015 Aug; 7(31):17482-8. PubMed ID: 26186007 [TBL] [Abstract][Full Text] [Related]
77. Modeling the path to >30% power conversion efficiency in perovskite solar cells with plasmonic nanoparticles. Mashrafi M; Anik MHK; Israt MF; Habib A; Islam S RSC Adv; 2023 Jun; 13(28):19447-19454. PubMed ID: 37383688 [TBL] [Abstract][Full Text] [Related]
78. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Lu L; Luo Z; Xu T; Yu L Nano Lett; 2013 Jan; 13(1):59-64. PubMed ID: 23237567 [TBL] [Abstract][Full Text] [Related]
79. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance. Rajender G; Choudhury B; Giri PK Nanotechnology; 2017 Sep; 28(39):395703. PubMed ID: 28726671 [TBL] [Abstract][Full Text] [Related]
80. Surface Plasmon Resonance Enhanced Polymer Solar Cells by Thermally Evaporating Au into Buffer Layer. Yao M; Jia X; Liu Y; Guo W; Shen L; Ruan S ACS Appl Mater Interfaces; 2015 Aug; 7(33):18866-71. PubMed ID: 26230868 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]