These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28937224)

  • 1. Thermocapillary Droplet Actuation: Effect of Solid Structure and Wettability.
    Karapetsas G; Chamakos NT; Papathanasiou AG
    Langmuir; 2017 Oct; 33(41):10838-10850. PubMed ID: 28937224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient modelling of droplet dynamics on complex surfaces.
    Karapetsas G; Chamakos NT; Papathanasiou AG
    J Phys Condens Matter; 2016 Mar; 28(8):085101. PubMed ID: 26828706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermocapillary-actuated contact-line motion of immiscible binary fluids over substrates with patterned wettability in narrow confinement.
    DasGupta D; Mondal PK; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023011. PubMed ID: 25215824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of contact line dynamics on the thermocapillary motion of a droplet on an inclined plate.
    Karapetsas G; Sahu KC; Matar OK
    Langmuir; 2013 Jul; 29(28):8892-906. PubMed ID: 23786489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Study of Droplet Dynamics on a Solid Surface with Insoluble Surfactants.
    Zhang J; Liu H; Ba Y
    Langmuir; 2019 Jun; 35(24):7858-7870. PubMed ID: 31120757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of slippage on the thermocapillary migration of a small droplet.
    Nguyen HB; Chen JC
    Biomicrofluidics; 2012 Mar; 6(1):12809-1280913. PubMed ID: 22662076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact angle hysteresis effect on the thermocapillary migration of liquid droplets.
    Dai Q; Huang W; Wang X
    J Colloid Interface Sci; 2018 Apr; 515():32-38. PubMed ID: 29328942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061603. PubMed ID: 23005105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermocapillarity in Microfluidics-A Review.
    Karbalaei A; Kumar R; Cho HJ
    Micromachines (Basel); 2016 Jan; 7(1):. PubMed ID: 30407386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Thermocapillary Migration on Radially Microgrooved Surfaces.
    Dai Q; Ji Y; Huang W; Wang X
    Langmuir; 2019 Jul; 35(28):9169-9176. PubMed ID: 31267755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces.
    Raj R; Enright R; Zhu Y; Adera S; Wang EN
    Langmuir; 2012 Nov; 28(45):15777-88. PubMed ID: 23057739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces.
    Dash S; Chandramohan A; Weibel JA; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062407. PubMed ID: 25615112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Investigation of the Flow Dynamics and Evaporative Cooling of Water Droplets Impinging onto Heated Surfaces: An Effective Approach To Identify Spray Cooling Mechanisms.
    Chen JN; Zhang Z; Xu RN; Ouyang XL; Jiang PX
    Langmuir; 2016 Sep; 32(36):9135-55. PubMed ID: 27531256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature.
    Karapetsas G; Sahu KC; Sefiane K; Matar OK
    Langmuir; 2014 Apr; 30(15):4310-21. PubMed ID: 24694047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermocapillary migration in small-scale temperature gradients: application to optofluidic drop dispensing.
    Robert de Saint Vincent M; Delville JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026310. PubMed ID: 22463320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the migration of a droplet on an incline.
    Dai Q; Khonsari MM; Shen C; Huang W; Wang X
    J Colloid Interface Sci; 2017 May; 494():8-14. PubMed ID: 28131033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors controlling the pinning force of liquid droplets on liquid infused surfaces.
    Sadullah MS; Panter JR; Kusumaatmaja H
    Soft Matter; 2020 Sep; 16(35):8114-8121. PubMed ID: 32734997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.