These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 2893723)

  • 1. [3H]chloramphenicol metabolism in human volunteer: oxamic acid as a new major metabolite.
    Corpet DE; Bories GF
    Drug Metab Dispos; 1987; 15(6):925-7. PubMed ID: 2893723
    [No Abstract]   [Full Text] [Related]  

  • 2. Investigation of the mechanism of the metabolic activation of chloramphenicol by rat liver microsomes. Identification of a new metabolite.
    Pohl LR; Nelson SD; Krishna G
    Biochem Pharmacol; 1978 Feb; 27(4):491-6. PubMed ID: 343786
    [No Abstract]   [Full Text] [Related]  

  • 3. The anaerobic metabolism of metronidazole forms N-(2-hydroxyethyl)-oxamic acid.
    Koch RL; Goldman P
    J Pharmacol Exp Ther; 1979 Mar; 208(3):406-10. PubMed ID: 430360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for new metabolic pathways of chloramphenicol in the duck.
    Cravedi JP; Baradat M; Debrauwer L; Alary J; Tulliez J; Bories G
    Drug Metab Dispos; 1994; 22(4):578-83. PubMed ID: 7956733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species differences in the metabolism of 14C-p-trifluoromethylaniline: production of an oxanilic acid as the major metabolite by the rat.
    Wilson ID; Macdonald CM; Fromson JM; Troke JA; Hillbeck D
    Biochem Pharmacol; 1985 Jun; 34(11):2025-8. PubMed ID: 4004918
    [No Abstract]   [Full Text] [Related]  

  • 6. Chloramphenicol oxamylethanolamine as an end product of chloramphenicol metabolism in rat and humans: evidence for the formation of a phospholipid adduct.
    Cravedi JP; Perdu-Durand E; Baradat M; Alary J; Debrauwer L; Bories G
    Chem Res Toxicol; 1995; 8(5):642-8. PubMed ID: 7548746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple and ion-pair high performance liquid chromatography as an improved analytical tool for chloramphenicol metabolic profiling.
    Bories GF; Peleran JC; Wal JM; Corpet DE
    Drug Metab Dispos; 1983; 11(3):249-54. PubMed ID: 6135584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of chloramphenicol oxamic acid as a new major metabolite of chloramphenicol in rats.
    Wal JM; Peleran JC; Bories GF
    FEBS Lett; 1980 Sep; 119(1):38-42. PubMed ID: 7428925
    [No Abstract]   [Full Text] [Related]  

  • 9. Formation of an N-acetylornithine conjugate of 3-phenoxybenzoic acid in the chicken.
    Huckle KR; Stoydin G; Hutson DH; Millburn P
    Drug Metab Dispos; 1982; 10(5):523-8. PubMed ID: 6128204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative metabolic profiling of chloramphenicol by isolated hepatocytes from rat and trout (Oncorhynchus mykiss).
    Cravedi JP; Baradat M
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1991; 100(3):649-52. PubMed ID: 1687566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new pathway for the oxidative metabolism of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; George JW; Pohl LR
    Drug Metab Dispos; 1982; 10(5):439-45. PubMed ID: 6128189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione-dependent dechlorination of chloramphenicol by cytosol of rat liver.
    Martin JL; George JW; Pohl LR
    Drug Metab Dispos; 1980; 8(2):93-7. PubMed ID: 6103795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High performance liquid chromatography (HPLC) method for confirming thin layer chromatography (TLC) findings in inborn errors of metabolism children in Malaysia.
    Yahya NA; Ismail Z; Embong KH; Mohamad SA
    Southeast Asian J Trop Med Public Health; 1995; 26 Suppl 1():130-3. PubMed ID: 8629091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biotransformation and pharmacokinetics of bamipine in rats. 1. biotransformation].
    Neidlein R; Kleiser M
    Arzneimittelforschung; 1987 Jan; 37(1):32-7. PubMed ID: 3566854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Chloramphenicol metabolism in the tissues of newborn and adult rabbits].
    Prokopczyk L; Jahn-Andrychowska W; Wańkowicz B; Kamińska E
    Probl Med Wieku Rozwoj; 1984; 13():198-206. PubMed ID: 6531349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of glutathione-dependent dechlorination of chloramphenicol and thiamphenicol by cytosol of rat liver.
    Martin JL; Gross BJ; Morris P; Pohl LR
    Drug Metab Dispos; 1980; 8(6):371-5. PubMed ID: 6109602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The metabolism of muzolimine.
    Gorrod JW; Messis PD; Ritter W
    Z Kardiol; 1985; 74 Suppl 2():152-6. PubMed ID: 4002792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductive dechlorination of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; Phol LR
    Drug Metab Dispos; 1983; 11(2):126-30. PubMed ID: 6133716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxalurate transport in Saccharomyces cerevisiae.
    Cooper TG; McKelvey J; Sumrada R
    J Bacteriol; 1979 Sep; 139(3):917-23. PubMed ID: 383700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of aminoglutethimide in humans: identification of hydroxylaminoglutethimide as an induced metabolite.
    Jarman M; Foster AB; Goss PE; Griggs LJ; Howe I; Coombes RC
    Biomed Mass Spectrom; 1983 Nov; 10(11):620-5. PubMed ID: 6689274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.