These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28937643)

  • 21. Phononic crystals based on LiNbO3 realized using domain inversion by electron-beam irradiation.
    Assouar BM; Vincent B; Moubchir H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):273-8. PubMed ID: 18334333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Band gap in tubular pillar phononic crystal plate.
    Shu F; Liu Y; Wu J; Wu Y
    Ultrasonics; 2016 Sep; 71():172-176. PubMed ID: 27376841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Band structure analysis of phononic crystals based on the Chebyshev interval method.
    Lei JR; Xie LX; Liu J
    J Acoust Soc Am; 2017 Nov; 142(5):3234. PubMed ID: 29195436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust topology optimization of three-dimensional photonic-crystal band-gap structures.
    Men H; Lee KY; Freund RM; Peraire J; Johnson SG
    Opt Express; 2014 Sep; 22(19):22632-48. PubMed ID: 25321732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the universality of the frequency spectrum and band-gap optimization of quasicrystalline-generated structured rods.
    Morini L; Gökay Tetik Z; Shmuel G; Gei M
    Philos Trans A Math Phys Eng Sci; 2020 Jan; 378(2162):20190240. PubMed ID: 31760899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Broad omnidirectional acoustic band gaps in a three-dimensional phononic crystal composed of face-centered cubic Helmholtz resonator network.
    Biçer A; Korozlu N; Kaya OA; Cicek A
    J Acoust Soc Am; 2021 Sep; 150(3):1591. PubMed ID: 34598637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inverse Design of Micro Phononic Beams Incorporating Size Effects via Tandem Neural Network.
    Li J; Miao Z; Li S; Ma Q
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs.
    Mohammadi S; Eftekhar AA; Khelif A; Adibi A
    Opt Express; 2010 Apr; 18(9):9164-72. PubMed ID: 20588763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inverse design of high-Q wave filters in two-dimensional phononic crystals by topology optimization.
    Dong HW; Wang YS; Zhang C
    Ultrasonics; 2017 Apr; 76():109-124. PubMed ID: 28086106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system.
    Hsieh PF; Wu TT; Sun JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):148-58. PubMed ID: 16471441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tuning of band structures in porous phononic crystals by grading design of cells.
    Wang K; Liu Y; Yang QS
    Ultrasonics; 2015 Aug; 61():25-32. PubMed ID: 25890636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Band Gaps and Vibration Isolation of a Three-dimensional Metamaterial with a Star Structure.
    Jiang H; Zhang M; Liu Y; Pei D; Chen M; Wang Y
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Innovative Joint for Cable Dome Structure Based on Topology Optimization and Additive Manufacturing.
    Du W; Wang H; Zhu L; Zhao Y; Wang Y; Hao R; Yang M
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal design of lattice structures for controllable extremal band gaps.
    Choi MJ; Oh MH; Koo B; Cho S
    Sci Rep; 2019 Jul; 9(1):9976. PubMed ID: 31292469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pole distribution in finite phononic crystals: Understanding Bragg-effects through closed-form system dynamics.
    Al Ba'ba'a H; Nouh M; Singh T
    J Acoust Soc Am; 2017 Sep; 142(3):1399. PubMed ID: 28964106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence of a broadband gap in a phononic crystal strip.
    Coffy E; Euphrasie S; Addouche M; Vairac P; Khelif A
    Ultrasonics; 2017 Jul; 78():51-56. PubMed ID: 28319820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical study and topology optimization of 1D periodic bimaterial phononic crystal plates for bandgaps of low order Lamb waves.
    Hedayatrasa S; Abhary K; Uddin M
    Ultrasonics; 2015 Mar; 57():104-24. PubMed ID: 25468146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials.
    Akimov AV; Tanaka Y; Pevtsov AB; Kaplan SF; Golubev VG; Tamura S; Yakovlev DR; Bayer M
    Phys Rev Lett; 2008 Jul; 101(3):033902. PubMed ID: 18764257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration of Additive Manufacturing, Parametric Design, and Optimization of Parts Obtained by Fused Deposition Modeling (FDM). A Methodological Approach.
    García-Dominguez A; Claver J; Sebastián MA
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32887281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calculations of Lamb wave band gaps and dispersions for piezoelectric phononic plates using mindlin's theory-based plane wave expansion method.
    Hsu JC; Wu TT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):431-41. PubMed ID: 18334349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.