These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 28937696)

  • 1. Chromophores of chromophores: a bottom-up Hückel picture of the excited states of photoactive proteins.
    Anstöter CS; Dean CR; Verlet JRR
    Phys Chem Chem Phys; 2017 Nov; 19(44):29772-29779. PubMed ID: 28937696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hückel Model for the Excited-State Dynamics of a Protein Chromophore Developed Using Photoelectron Imaging.
    Anstöter CS; Verlet JRR
    Acc Chem Res; 2022 May; 55(9):1205-1213. PubMed ID: 35172580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of microhydration on the electronic structure of the chromophores of the photoactive yellow and green fluorescent proteins.
    Zuev D; Bravaya KB; Makarova MV; Krylov AI
    J Chem Phys; 2011 Nov; 135(19):194304. PubMed ID: 22112079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excited States and Photochemistry of Chromophores in the Photoactive Proteins Explored by the Combined Quantum Mechanical and Molecular Mechanical Calculations.
    Liu L; Cui G; Fang WH
    Adv Protein Chem Struct Biol; 2015; 100():255-84. PubMed ID: 26415847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrationally resolved photoabsorption spectroscopy of red fluorescent protein chromophore anions.
    Boyé S; Krogh H; Nielsen IB; Nielsen SB; Pedersen SU; Pedersen UV; Andersen LH; Bell AF; He X; Tonge PJ
    Phys Rev Lett; 2003 Mar; 90(11):118103. PubMed ID: 12688970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodetachment spectra of deprotonated fluorescent protein chromophore anions.
    Mooney CR; Sanz ME; McKay AR; Fitzmaurice RJ; Aliev AE; Caddick S; Fielding HH
    J Phys Chem A; 2012 Aug; 116(30):7943-9. PubMed ID: 22738202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the electronic structure of platinum(II) chromophores: crystal structures, NMR structures, and photophysical properties of six new bis- and di- phenolate/thiolate Pt(II)diimine chromophores.
    Weinstein JA; Tierney MT; Davies ES; Base K; Robeiro AA; Grinstaff MW
    Inorg Chem; 2006 May; 45(11):4544-55. PubMed ID: 16711705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore.
    Liu XY; Chang XP; Xia SH; Cui G; Thiel W
    J Chem Theory Comput; 2016 Feb; 12(2):753-64. PubMed ID: 26744782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locally-excited (LE) versus charge-transfer (CT) excited state competition in a series of para-substituted neutral green fluorescent protein (GFP) chromophore models.
    Olsen S
    J Phys Chem B; 2015 Feb; 119(6):2566-75. PubMed ID: 25343562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent density-functional approach for biological chromophores: the case of the green fluorescent protein.
    Marques MA; López X; Varsano D; Castro A; Rubio A
    Phys Rev Lett; 2003 Jun; 90(25 Pt 1):258101. PubMed ID: 12857170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent Effects on the Absorption Spectra of the para-Coumaric Acid Chromophore in Its Different Protonation Forms.
    García-Prieto FF; Galván IF; Muñoz-Losa A; Aguilar MA; Martín ME
    J Chem Theory Comput; 2013 Oct; 9(10):4481-94. PubMed ID: 26589166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excited state dynamics of the isolated green fluorescent protein chromophore anion following UV excitation.
    West CW; Bull JN; Hudson AS; Cobb SL; Verlet JR
    J Phys Chem B; 2015 Mar; 119(10):3982-7. PubMed ID: 25686152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopy of nitrophenolates in vacuo: effect of spacer, configuration, and microsolvation on the charge-transfer excitation energy.
    Brøndsted Nielsen S; Brøndsted Nielsen M; Rubio A
    Acc Chem Res; 2014 Apr; 47(4):1417-25. PubMed ID: 24673172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving Electronic Transitions in Synthetic Fluorescent Protein Chromophores by Magnetic Circular Dichroism.
    Štěpánek P; Cowie TY; Šafařík M; Šebestík J; Pohl R; Bouř P
    Chemphyschem; 2016 Aug; 17(15):2348-54. PubMed ID: 27124359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV excited-state photoresponse of biochromophore negative ions.
    Bochenkova AV; Klærke B; Rahbek DB; Rajput J; Toker Y; Andersen LH
    Angew Chem Int Ed Engl; 2014 Sep; 53(37):9797-801. PubMed ID: 25044707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited-state structure determination of the green fluorescent protein chromophore.
    Usman A; Mohammed OF; Nibbering ET; Dong J; Solntsev KM; Tolbert LM
    J Am Chem Soc; 2005 Aug; 127(32):11214-5. PubMed ID: 16089429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QM/MM study of the monomeric red fluorescent protein DsRed.M1.
    Sanchez-Garcia E; Doerr M; Hsiao YW; Thiel W
    J Phys Chem B; 2009 Dec; 113(52):16622-31. PubMed ID: 19994834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking the Approximate Second-Order Coupled-Cluster Method on Biochromophores.
    Send R; Kaila VR; Sundholm D
    J Chem Theory Comput; 2011 Aug; 7(8):2473-84. PubMed ID: 26606621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collapse and recovery of green fluorescent protein chromophore emission through topological effects.
    Tolbert LM; Baldridge A; Kowalik J; Solntsev KM
    Acc Chem Res; 2012 Feb; 45(2):171-81. PubMed ID: 21861536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.