These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28937701)

  • 41. Single layer of polymeric cobalt phthalocyanine: promising low-cost and high-activity nanocatalysts for CO oxidation.
    Deng Q; Zhao L; Gao X; Zhang M; Luo Y; Zhao Y
    Small; 2013 Oct; 9(20):3506-13. PubMed ID: 23585395
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxygen-Molecule Adsorption and Dissociation on BCN Graphene: A First-Principles Study.
    Tang S; Wu W; Liu L; Gu J
    Chemphyschem; 2017 Jan; 18(1):101-110. PubMed ID: 27685829
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dispersion corrected density functional study of CO oxidation on pristine/functionalized/doped graphene surfaces in aqueous phase.
    Riyaz M; Yadav S; Goel N
    J Mol Graph Model; 2018 Jan; 79():27-34. PubMed ID: 29127855
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of the co-adsorption of small molecules from air on the properties of penta-graphene and their proton transfer calculation.
    Jin K; Lu K; Liu X
    Phys Chem Chem Phys; 2022 Feb; 24(8):4785-4795. PubMed ID: 35144277
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.
    Lazar P; Zbořil R; Pumera M; Otyepka M
    Phys Chem Chem Phys; 2014 Jul; 16(27):14231-5. PubMed ID: 24912566
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CO oxidation over defective and nonmetal doped MoS
    Linghu Y; Lu D; Wu C
    J Phys Condens Matter; 2021 Apr; 33(16):. PubMed ID: 33735845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the mechanism of gas adsorption for pristine, defective and functionalized graphene.
    You Y; Deng J; Tan X; Gorjizadeh N; Yoshimura M; Smith SC; Sahajwalla V; Joshi RK
    Phys Chem Chem Phys; 2017 Feb; 19(8):6051-6056. PubMed ID: 28191577
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combinatorial selection of a two-dimensional 3d-TM-tetracyanoquinodimethane (TM-TCNQ) monolayer as a high-activity nanocatalyst for CO oxidation.
    Deng Q; Wu T; Chen G; Hansen HA; Vegge T
    Phys Chem Chem Phys; 2018 Feb; 20(7):5173-5179. PubMed ID: 29393946
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single Pd atomic catalyst on Mo
    Cheng C; Zhang X; Wang M; Wang S; Yang Z
    Phys Chem Chem Phys; 2018 Jan; 20(5):3504-3513. PubMed ID: 29336445
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unraveling Catalytic Mechanisms for CO Oxidation on Boron-Doped Fullerene: A Computational Study.
    Chen KY; Wu SY; Chen HT
    ACS Omega; 2020 Nov; 5(44):28870-28876. PubMed ID: 33195940
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fe@χ
    Han JW; Bian WY; Zhang YY; Zhang M
    Front Chem; 2022; 10():1008332. PubMed ID: 36176892
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Graphdiyne as a metal-free catalyst for low-temperature CO oxidation.
    Wu P; Du P; Zhang H; Cai C
    Phys Chem Chem Phys; 2014 Mar; 16(12):5640-8. PubMed ID: 24519135
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the interplay between geometrical structure and magnetic anisotropy: a relativistic density-functional study of mixed Pt-Co and Pt-Fe trimers and tetramers in the gas-phase and supported on graphene.
    Błoński P; Hafner J
    J Phys Condens Matter; 2015 Feb; 27(4):046002. PubMed ID: 25563574
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel Fe-Co double-atom catalyst with high low-temperature activity and strong water-resistant for O
    Yang W; Ren J; Li J; Zhang H; Ma K; Wang Q; Gao Z; Wu C; Gates ID
    J Hazard Mater; 2022 Jan; 421():126639. PubMed ID: 34396974
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single transition metal anchored C
    Huang J; Zhou C; Chu Z; Liu X; Duan X
    Phys Chem Chem Phys; 2021 Jan; 23(3):1868-1873. PubMed ID: 33442713
    [TBL] [Abstract][Full Text] [Related]  

  • 56. B-N Co-Doped Graphene: Stability and Catalytic Activity in Oxygen Reduction Reaction - A Theoretical Insight.
    Wang J; Guo J; Liu YY; Li P; Fang Q; Li XC; Song W
    Chemphyschem; 2024 Jun; ():e202400414. PubMed ID: 38896533
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study.
    Ren X; Wang B; Zhu J; Liu J; Zhang W; Wen Z
    Phys Chem Chem Phys; 2015 Jun; 17(22):14605-12. PubMed ID: 25970821
    [TBL] [Abstract][Full Text] [Related]  

  • 59. First-principle calculations on CO oxidation catalyzed by a gold nanoparticle.
    Chen HT; Chang JG; Ju SP; Chen HL
    J Comput Chem; 2010 Jan; 31(2):258-65. PubMed ID: 19434739
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pd/Pt embedded CN monolayers as efficient catalysts for CO oxidation.
    Rao YC; Duan XM
    Phys Chem Chem Phys; 2019 Nov; 21(46):25743-25748. PubMed ID: 31720619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.