BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28937738)

  • 21. Rational material design for ultrafast rechargeable lithium-ion batteries.
    Tang Y; Zhang Y; Li W; Ma B; Chen X
    Chem Soc Rev; 2015 Oct; 44(17):5926-40. PubMed ID: 25857819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress.
    Xiang Y; Li J; Lei J; Liu D; Xie Z; Qu D; Li K; Deng T; Tang H
    ChemSusChem; 2016 Nov; 9(21):3023-3039. PubMed ID: 27667306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Dimensional Conductive Gel Network as an Effective Binder for High-Performance Si Electrodes in Lithium-Ion Batteries.
    Yu X; Yang H; Meng H; Sun Y; Zheng J; Ma D; Xu X
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15961-7. PubMed ID: 26154655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tannic-Acid-Coated Polypropylene Membrane as a Separator for Lithium-Ion Batteries.
    Pan L; Wang H; Wu C; Liao C; Li L
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16003-10. PubMed ID: 26177514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.
    Fang X; Peng H
    Small; 2015 Apr; 11(13):1488-511. PubMed ID: 25510342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The development of a new type of rechargeable batteries based on hybrid electrolytes.
    Zhou H; Wang Y; Li H; He P
    ChemSusChem; 2010 Sep; 3(9):1009-19. PubMed ID: 20677207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation.
    Wu N; Yang ZZ; Yao HR; Yin YX; Gu L; Guo YG
    Angew Chem Int Ed Engl; 2015 May; 54(19):5757-61. PubMed ID: 25783632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-Polymerized Dopamine Nanoparticles Modified Separators for Improving Electrochemical Performance and Enhancing Mechanical Strength of Lithium-Ion Batteries.
    Hao W; Kong D; Xie J; Chen Y; Ding J; Wang F; Xu T
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32178318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries.
    Lee HJ; Shin J; Choi JW
    Adv Mater; 2018 Oct; 30(42):e1705851. PubMed ID: 29573290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling Solid-Electrolyte-Interphase Layer by Coating P-Type Semiconductor NiOx on Li4Ti5O12 for High-Energy-Density Lithium-Ion Batteries.
    Jo MR; Lee GH; Kang YM
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27934-9. PubMed ID: 26619966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.
    Lee S; Kwon G; Ku K; Yoon K; Jung SK; Lim HD; Kang K
    Adv Mater; 2018 Oct; 30(42):e1704682. PubMed ID: 29582467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elucidating the Polymeric Binder Distribution within Lithium-Ion Battery Electrodes Using SAICAS.
    Kim K; Byun S; Choi J; Hong S; Ryou MH; Lee YM
    Chemphyschem; 2018 Jul; 19(13):1627-1634. PubMed ID: 29603536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spider Silk-Inspired Binder Design for Flexible Lithium-Ion Battery with High Durability.
    Wang Y; Zhu J; Chen A; Guo X; Cui H; Chen Z; Hou Y; Huang Z; Wang D; Liang G; Cao SC; Zhi C
    Adv Mater; 2023 Nov; 35(47):e2303165. PubMed ID: 37493625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative Study of the Adhesion Properties of Ceramic Composite Separators Using a Surface and Interfacial Cutting Analysis System for Lithium-Ion Batteries.
    Jeon H; Choi J; Ryou MH; Lee YM
    ACS Omega; 2017 May; 2(5):2159-2164. PubMed ID: 31457568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Development in Separators for High-Temperature Lithium-Ion Batteries.
    Waqas M; Ali S; Feng C; Chen D; Han J; He W
    Small; 2019 Aug; 15(33):e1901689. PubMed ID: 31116914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solid Electrolyte Lithium Phosphous Oxynitride as a Protective Nanocladding Layer for 3D High-Capacity Conversion Electrodes.
    Lin CF; Noked M; Kozen AC; Liu C; Zhao O; Gregorczyk K; Hu L; Lee SB; Rubloff GW
    ACS Nano; 2016 Feb; 10(2):2693-701. PubMed ID: 26820038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gifts from Nature: Bio-Inspired Materials for Rechargeable Secondary Batteries.
    Jo CH; Voronina N; Sun YK; Myung ST
    Adv Mater; 2021 Sep; 33(37):e2006019. PubMed ID: 34337779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interface Engineering of Zinc Electrode for Rechargeable Alkaline Zinc-Based Batteries.
    Zhang Q; Liu X; Zhu X; Wan Y; Zhong C
    Small Methods; 2023 Feb; 7(2):e2201277. PubMed ID: 36605007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.