These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 28937847)
1. Toxic interaction mechanism of two fluoroquinolones with serum albumin by spectroscopic and computational methods. Qin P; Pan X; Liu R; Hu C; Dong Y J Environ Sci Health B; 2017 Nov; 52(11):833-841. PubMed ID: 28937847 [TBL] [Abstract][Full Text] [Related]
2. Experimental and computational characterization on the binding of two fluoroquinolones to bovine hemoglobin. Qin P; Pan X; Liu R; Qiu J; Fang X J Mol Recognit; 2017 Dec; 30(12):. PubMed ID: 28608588 [TBL] [Abstract][Full Text] [Related]
3. Probing the binding of two fluoroquinolones to lysozyme: a combined spectroscopic and docking study. Qin P; Su B; Liu R Mol Biosyst; 2012 Apr; 8(4):1222-9. PubMed ID: 22290106 [TBL] [Abstract][Full Text] [Related]
4. Characterization on the toxic mechanism of two fluoroquinolones to trypsin by spectroscopic and computational methods. Guo Y; Qin P; Wang C; Pan X; Dong X; Zong W J Environ Sci Health B; 2020; 55(3):230-238. PubMed ID: 31679438 [TBL] [Abstract][Full Text] [Related]
5. Oxidative stress response of two fluoroquinolones with catalase and erythrocytes: a combined molecular and cellular study. Qin P; Liu R J Hazard Mater; 2013 May; 252-253():321-9. PubMed ID: 23542600 [TBL] [Abstract][Full Text] [Related]
6. Affinity and specificity of ciprofloxacin-bovine serum albumin interactions: spectroscopic approach. Hu YJ; Ou-Yang Y; Zhang Y; Liu Y Protein J; 2010 May; 29(4):234-41. PubMed ID: 20458527 [TBL] [Abstract][Full Text] [Related]
7. Study of the interaction between fluoroquinolones and bovine serum albumin. Seetharamappa J; Kamat BP J Pharm Biomed Anal; 2005 Oct; 39(5):1046-50. PubMed ID: 15985357 [TBL] [Abstract][Full Text] [Related]
8. Exploring the binding mechanism of 5-hydroxy-3',4',7-trimethoxyflavone with bovine serum albumin: Spectroscopic and computational approach. Sudha A; Srinivasan P; Thamilarasan V; Sengottuvelan N Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 157():170-181. PubMed ID: 26773261 [TBL] [Abstract][Full Text] [Related]
9. Study on the interaction between Besifloxacin and bovine serum albumin by spectroscopic techniques. Yu X; Jiang B; Liao Z; Jiao Y; Yi P Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():116-21. PubMed ID: 25950636 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin (BSA). Tian Z; Zang F; Luo W; Zhao Z; Wang Y; Xu X; Wang C J Photochem Photobiol B; 2015 Jan; 142():103-9. PubMed ID: 25528194 [TBL] [Abstract][Full Text] [Related]
11. Multispectroscopic exploration and molecular docking analysis on interaction of eriocitrin with bovine serum albumin. Cao X; Yang Z; He Y; Xia Y; He Y; Liu J J Mol Recognit; 2019 Jul; 32(7):e2779. PubMed ID: 30701606 [TBL] [Abstract][Full Text] [Related]
12. Investigation on the interaction between triclosan and bovine serum albumin by spectroscopic methods. Gu J; Zheng S; Zhao H; Sun T J Environ Sci Health B; 2020; 55(1):52-59. PubMed ID: 31453744 [TBL] [Abstract][Full Text] [Related]
13. Effect of triazole-tryptophan hybrid on the conformation stability of bovine serum albumin. Aneja B; Kumari M; Azam A; Kumar A; Abid M; Patel R Luminescence; 2018 May; 33(3):464-474. PubMed ID: 29314579 [TBL] [Abstract][Full Text] [Related]
14. Multi-spectroscopic study on interaction of bovine serum albumin with lomefloxacin-copper(II) complex. Lu JQ; Jin F; Sun TQ; Zhou XW Int J Biol Macromol; 2007 Mar; 40(4):299-304. PubMed ID: 17030362 [TBL] [Abstract][Full Text] [Related]
15. Combined spectroscopies and molecular docking approach to characterizing the binding interaction of enalapril with bovine serum albumin. Pan DQ; Jiang M; Liu TT; Wang Q; Shi JH Luminescence; 2017 Jun; 32(4):481-490. PubMed ID: 27550396 [TBL] [Abstract][Full Text] [Related]
16. Horizontal comparison of "red or blue shift" and binding energy of six fluoroquinolones: Fluorescence quenching mechanism, theoretical calculation and molecular modeling method. Lu H; Li Z; Zhou Y; Jiang H; Liu Y; Hao C Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121383. PubMed ID: 35597157 [TBL] [Abstract][Full Text] [Related]
17. Deciphering the complexation process of a fluoroquinolone antibiotic, levofloxacin, with bovine serum albumin in the presence of additives. Kaur A; Khan IA; Banipal PK; Banipal TS Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():259-270. PubMed ID: 29045929 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin. Abdelhameed AS; Alanazi AM; Bakheit AH; Darwish HW; Ghabbour HA; Darwish IA Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():174-182. PubMed ID: 27526341 [TBL] [Abstract][Full Text] [Related]
19. Binding interaction of sorafenib with bovine serum albumin: Spectroscopic methodologies and molecular docking. Shi JH; Chen J; Wang J; Zhu YY; Wang Q Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():630-7. PubMed ID: 25985127 [TBL] [Abstract][Full Text] [Related]
20. Binding of oxytetracycline to bovine serum albumin: spectroscopic and molecular modeling investigations. Chi Z; Liu R; Teng Y; Fang X; Gao C J Agric Food Chem; 2010 Sep; 58(18):10262-9. PubMed ID: 20799712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]