These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 28938215)

  • 1. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT.
    Guo T; Cibin R; Chaubey I; Gitau M; Arnold JG; Srinivasan R; Kiniry JR; Engel BA
    Sci Total Environ; 2018 Feb; 613-614():724-735. PubMed ID: 28938215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Integrated Landscape Designed for Commodity and Bioenergy Crops for a Tile-Drained Agricultural Watershed.
    Ssegane H; Negri MC
    J Environ Qual; 2016 Sep; 45(5):1588-1596. PubMed ID: 27695735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and assessing water and nutrient balances in a tile-drained agricultural watershed in the U.S. Corn Belt.
    Ren D; Engel B; Mercado JAV; Guo T; Liu Y; Huang G
    Water Res; 2022 Feb; 210():117976. PubMed ID: 34953214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.
    Femeena PV; Sudheer KP; Cibin R; Chaubey I
    J Environ Manage; 2018 Apr; 212():198-209. PubMed ID: 29432999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.
    Ng TL; Eheart JW; Cai X; Miguez F
    Environ Sci Technol; 2010 Sep; 44(18):7138-44. PubMed ID: 20681575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops.
    Smith CM; David MB; Mitchell CA; Masters MD; Anderson-Teixeira KJ; Bernacchi CJ; Delucia EH
    J Environ Qual; 2013; 42(1):219-28. PubMed ID: 23673757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating the influence of integrated crop-livestock systems on water yield at watershed scale.
    Pérez-Gutiérrez JD; Kumar S
    J Environ Manage; 2019 Jun; 239():385-394. PubMed ID: 30925408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest.
    Hussain MZ; Robertson GP; Basso B; Hamilton SK
    Sci Total Environ; 2020 Sep; 734():139379. PubMed ID: 32473451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crop improvement influences on water quantity and quality processes in an agricultural watershed.
    Ren D; Engel B; Tuinstra MR
    Water Res; 2022 Jun; 217():118353. PubMed ID: 35405549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy.
    Gramig BM; Reeling CJ; Cibin R; Chaubey I
    Environ Sci Technol; 2013 Feb; 47(4):1784-91. PubMed ID: 23339778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.
    Blank PJ; Williams CL; Sample DW; Meehan TD; Turner MG
    Ecol Appl; 2016 Jan; 26(1):42-54. PubMed ID: 27039508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrologic cost-effectiveness ratio favors switchgrass production on marginal croplands over existing grasslands.
    Yimam YT; Ochsner TE; Fox GA
    PLoS One; 2017; 12(8):e0181924. PubMed ID: 28792541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil carbon change and net energy associated with biofuel production on marginal lands: a regional modeling perspective.
    Bandaru V; Izaurralde RC; Manowitz D; Link R; Zhang X; Post WM
    J Environ Qual; 2013 Nov; 42(6):1802-14. PubMed ID: 25602420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of targeted pollutant-mitigation-strategies to reduce nitrate and sediment hotspots in agricultural watershed.
    Teshager AD; Gassman PW; Secchi S; Schoof JT
    Sci Total Environ; 2017 Dec; 607-608():1188-1200. PubMed ID: 28732398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving nitrate load simulation of the SWAT model in an extensively tile-drained watershed.
    Kim J; Her Y; Bhattarai R; Jeong H
    Sci Total Environ; 2023 Dec; 904():166331. PubMed ID: 37595899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pest-suppression potential of midwestern landscapes under contrasting bioenergy scenarios.
    Meehan TD; Werling BP; Landis DA; Gratton C
    PLoS One; 2012; 7(7):e41728. PubMed ID: 22848582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential impacts on ecosystem services of land use transitions to second-generation bioenergy crops in GB.
    Milner S; Holland RA; Lovett A; Sunnenberg G; Hastings A; Smith P; Wang S; Taylor G
    Glob Change Biol Bioenergy; 2016 Mar; 8(2):317-333. PubMed ID: 27547244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel framework to classify marginal land for sustainable biomass feedstock production.
    Gopalakrishnan G; Cristina Negri M; Snyder SW
    J Environ Qual; 2011; 40(5):1593-600. PubMed ID: 21869522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subsurface Drainage Nitrate and Total Reactive Phosphorus Losses in Bioenergy-Based Prairies and Corn Systems.
    Daigh AL; Zhou X; Helmers MJ; Pederson CH; Horton R; Jarchow M; Liebman M
    J Environ Qual; 2015 Sep; 44(5):1638-46. PubMed ID: 26436280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.