These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
372 related articles for article (PubMed ID: 28938396)
1. Transgenic Expression of the Vitamin D Receptor Restricted to the Ileum, Cecum, and Colon of Vitamin D Receptor Knockout Mice Rescues Vitamin D Receptor-Dependent Rickets. Dhawan P; Veldurthy V; Yehia G; Hsaio C; Porta A; Kim KI; Patel N; Lieben L; Verlinden L; Carmeliet G; Christakos S Endocrinology; 2017 Nov; 158(11):3792-3804. PubMed ID: 28938396 [TBL] [Abstract][Full Text] [Related]
2. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Xue Y; Fleet JC Gastroenterology; 2009 Apr; 136(4):1317-27, e1-2. PubMed ID: 19254681 [TBL] [Abstract][Full Text] [Related]
3. Compensatory Changes in Calcium Metabolism Accompany the Loss of Vitamin D Receptor (VDR) From the Distal Intestine and Kidney of Mice. Reyes-Fernandez PC; Fleet JC J Bone Miner Res; 2016 Jan; 31(1):143-51. PubMed ID: 26211511 [TBL] [Abstract][Full Text] [Related]
4. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Yamamoto Y; Yoshizawa T; Fukuda T; Shirode-Fukuda Y; Yu T; Sekine K; Sato T; Kawano H; Aihara K; Nakamichi Y; Watanabe T; Shindo M; Inoue K; Inoue E; Tsuji N; Hoshino M; Karsenty G; Metzger D; Chambon P; Kato S; Imai Y Endocrinology; 2013 Mar; 154(3):1008-20. PubMed ID: 23389957 [TBL] [Abstract][Full Text] [Related]
5. The impact of VDR expression and regulation in vivo. Lee SM; Meyer MB; Benkusky NA; O'Brien CA; Pike JW J Steroid Biochem Mol Biol; 2018 Mar; 177():36-45. PubMed ID: 28602960 [TBL] [Abstract][Full Text] [Related]
6. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138 [TBL] [Abstract][Full Text] [Related]
7. Analysis of 1,25-Dihydroxyvitamin D Li S; De La Cruz J; Hutchens S; Mukhopadhyay S; Criss ZK; Aita R; Pellon-Cardenas O; Hur J; Soteropoulos P; Husain S; Dhawan P; Verlinden L; Carmeliet G; Fleet JC; Shroyer NF; Verzi MP; Christakos S Mol Cell Biol; 2020 Dec; 41(1):. PubMed ID: 33139494 [TBL] [Abstract][Full Text] [Related]
8. Transgenic expression of the human Vitamin D receptor (hVDR) in the duodenum of VDR-null mice attenuates the age-dependent decline in calcium absorption. Marks HD; Fleet JC; Peleg S J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):513-6. PubMed ID: 17207992 [TBL] [Abstract][Full Text] [Related]
9. In vivo function of VDR in gene expression-VDR knock-out mice. Kato S; Takeyama K; Kitanaka S; Murayama A; Sekine K; Yoshizawa T J Steroid Biochem Mol Biol; 1999; 69(1-6):247-51. PubMed ID: 10418998 [TBL] [Abstract][Full Text] [Related]
10. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Van Cromphaut SJ; Dewerchin M; Hoenderop JG; Stockmans I; Van Herck E; Kato S; Bindels RJ; Collen D; Carmeliet P; Bouillon R; Carmeliet G Proc Natl Acad Sci U S A; 2001 Nov; 98(23):13324-9. PubMed ID: 11687634 [TBL] [Abstract][Full Text] [Related]
11. Lithocholic Acid Is a Vitamin D Receptor Ligand That Acts Preferentially in the Ileum. Ishizawa M; Akagi D; Makishima M Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 29986424 [TBL] [Abstract][Full Text] [Related]
12. A High-Calcium and Phosphate Rescue Diet and VDR-Expressing Transgenes Normalize Serum Vitamin D Metabolite Profiles and Renal Cyp27b1 and Cyp24a1 Expression in VDR Null Mice. Kaufmann M; Lee SM; Pike JW; Jones G Endocrinology; 2015 Dec; 156(12):4388-97. PubMed ID: 26441239 [TBL] [Abstract][Full Text] [Related]
13. Vitamin D and type II sodium-dependent phosphate cotransporters. Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552 [TBL] [Abstract][Full Text] [Related]
14. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice. Chow EC; Quach HP; Vieth R; Pang KS Am J Physiol Endocrinol Metab; 2013 May; 304(9):E977-89. PubMed ID: 23482451 [TBL] [Abstract][Full Text] [Related]
15. Pregnancy in mice lacking the vitamin D receptor: normal maternal skeletal response, but fetal hypomineralization rescued by maternal calcium supplementation. Rummens K; van Cromphaut SJ; Carmeliet G; van Herck E; van Bree R; Stockmans I; Bouillon R; Verhaeghe J Pediatr Res; 2003 Oct; 54(4):466-73. PubMed ID: 12815117 [TBL] [Abstract][Full Text] [Related]
16. Coactivator-independent vitamin D receptor signaling causes severe rickets in mice, that is not prevented by a diet high in calcium, phosphate, and lactose. Doms S; Verlinden L; Janssens I; Vanhevel J; Eerlings R; Houtman R; Kato S; Mathieu C; Decallonne B; Carmeliet G; Verstuyf A Bone Res; 2024 Aug; 12(1):44. PubMed ID: 39164247 [TBL] [Abstract][Full Text] [Related]
17. Dietary phosphorus restriction reverses the impaired bone mineralization in vitamin D receptor knockout mice. Masuyama R; Nakaya Y; Tanaka S; Tsurukami H; Nakamura T; Watanabe S; Yoshizawa T; Kato S; Suzuki K Endocrinology; 2001 Jan; 142(1):494-7. PubMed ID: 11145614 [TBL] [Abstract][Full Text] [Related]
18. [Exogenous estrogen improved calcium homeostasis and skeletal mineralization in vitamin D receptor gene knockout female mice]. Li BY; Tong J; Zhang ZL Sheng Li Xue Bao; 2006 Dec; 58(6):573-6. PubMed ID: 17173192 [TBL] [Abstract][Full Text] [Related]
19. Sex-related differences in the skeletal phenotype of aged vitamin D receptor global knockout mice. Ryan JW; Starczak Y; Tsangari H; Sawyer RK; Davey RA; Atkins GJ; Morris HA; Anderson PH J Steroid Biochem Mol Biol; 2016 Nov; 164():361-368. PubMed ID: 26690785 [TBL] [Abstract][Full Text] [Related]
20. Membrane actions of vitamin D metabolites 1alpha,25(OH)2D3 and 24R,25(OH)2D3 are retained in growth plate cartilage cells from vitamin D receptor knockout mice. Boyan BD; Sylvia VL; McKinney N; Schwartz Z J Cell Biochem; 2003 Dec; 90(6):1207-23. PubMed ID: 14635194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]