These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28938805)

  • 1. The kinetic energy operator for distance-dependent effective nuclear masses: Derivation for a triatomic molecule.
    Khoma M; Jaquet R
    J Chem Phys; 2017 Sep; 147(11):114106. PubMed ID: 28938805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding nuclear motions in molecules: Derivation of Eckart frame ro-vibrational Hamiltonian operators via a gateway Hamiltonian operator.
    Szalay V
    J Chem Phys; 2015 May; 142(17):174107. PubMed ID: 25956090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a nondirect-product basis for treating singularities in triatomic rotational-vibrational calculations.
    Czakó G; Furtenbacher T; Barletta P; Császár AG; Szalay V; Sutcliffe BT
    Phys Chem Chem Phys; 2007 Jul; 9(26):3407-15. PubMed ID: 17664964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rovibrational molecular hamiltonian in mixed bond-angle and umbrella-like coordinates.
    Makarewicz J; Skalozub A
    J Phys Chem A; 2007 Aug; 111(32):7860-9. PubMed ID: 17637044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principle calculation of reduced masses in vibrational analysis using generalized internal coordinates: some crucial aspects and examples.
    Stare J
    J Chem Inf Model; 2007; 47(3):840-50. PubMed ID: 17487962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling non-adiabatic effects in H₃⁺: solution of the rovibrational Schrödinger equation with motion-dependent masses and mass surfaces.
    Mátyus E; Szidarovszky T; Császár AG
    J Chem Phys; 2014 Oct; 141(15):154111. PubMed ID: 25338885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame.
    Yachmenev A; Yurchenko SN
    J Chem Phys; 2015 Jul; 143(1):014105. PubMed ID: 26156463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates.
    Czakó G; Szalay V; Császár AG; Furtenbacher T
    J Chem Phys; 2005 Jan; 122(2):024101. PubMed ID: 15638566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fourth age of quantum chemistry: molecules in motion.
    Császár AG; Fábri C; Szidarovszky T; Mátyus E; Furtenbacher T; Czakó G
    Phys Chem Chem Phys; 2012 Jan; 14(3):1085-106. PubMed ID: 21997300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical expansion of the kinetic energy operator in curvilinear coordinates for the vibrational self-consistent field method.
    Strobusch D; Scheurer Ch
    J Chem Phys; 2011 Sep; 135(12):124102. PubMed ID: 21974507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the use of optimal internal vibrational coordinates for symmetrical bent triatomic molecules.
    Zúñiga J; Picón JA; Bastida A; Requena A
    J Chem Phys; 2005 Jun; 122(22):224319. PubMed ID: 15974680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Nonadiabatic Effects for the Vibrational Spectrum of a Triatomic Molecule: The Use of a Single Potential Energy Surface with Distance-Dependent Masses for H
    Jaquet R; Khoma MV
    J Phys Chem A; 2017 Sep; 121(37):7016-7030. PubMed ID: 28820589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Derivation of ρ-dependent coordinate transformations for nonrigid molecules in the Hougen-Bunker-Johns formalism.
    Viglaska D; Rey M; Nikitin AV; Tyuterev VG
    J Chem Phys; 2020 Aug; 153(8):084102. PubMed ID: 32872870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular Hamiltonian.
    Meyer H
    Annu Rev Phys Chem; 2002; 53():141-72. PubMed ID: 11972005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The von Neumann basis in non-Cartesian coordinates: application to floppy triatomic molecules.
    Shimshovitz A; Bačić Z; Tannor DJ
    J Chem Phys; 2014 Dec; 141(23):234106. PubMed ID: 25527918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general nuclear motion Hamiltonian and non-internal curvilinear coordinates.
    Strobusch D; Scheurer Ch
    J Chem Phys; 2013 Mar; 138(9):094107. PubMed ID: 23485277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical derivation of row-orthonormal hyperspherical harmonics for triatomic systems.
    Wang D; Kuppermann A
    J Phys Chem A; 2009 Dec; 113(52):15384-410. PubMed ID: 20028184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward black-box-type full- and reduced-dimensional variational (ro)vibrational computations.
    Mátyus E; Czakó G; Császár AG
    J Chem Phys; 2009 Apr; 130(13):134112. PubMed ID: 19355722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational Coupled Cluster Computations in Polyspherical Coordinates with the Exact Analytical Kinetic Energy Operator.
    Klinting EL; Lauvergnat D; Christiansen O
    J Chem Theory Comput; 2020 Jul; 16(7):4505-4520. PubMed ID: 32422041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspects of the Eckart frame ro-vibrational kinetic energy operator.
    Szalay V
    J Chem Phys; 2015 Aug; 143(6):064104. PubMed ID: 26277124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.