These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Examination of fibronectin distribution and its sources in the regenerating newt limb by immunocytochemistry and in situ hybridization. Nace JD; Tassava RA Dev Dyn; 1995 Feb; 202(2):153-64. PubMed ID: 7734733 [TBL] [Abstract][Full Text] [Related]
23. Expression and Functional Characterization of Ye G; Feng Y; Mi Z; Wang D; Lin S; Chen F; Cui J; Yu Y Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33573315 [No Abstract] [Full Text] [Related]
24. Expression of regeneration-associated cytoskeletal proteins reveals differences and similarities between regenerating organs. Ferretti P; Ghosh S Dev Dyn; 1997 Nov; 210(3):288-304. PubMed ID: 9389454 [TBL] [Abstract][Full Text] [Related]
25. iTRAQ reveals proteomic changes during intestine regeneration in the sea cucumber Apostichopus japonicus. Sun L; Xu D; Xu Q; Sun J; Xing L; Zhang L; Yang H Comp Biochem Physiol Part D Genomics Proteomics; 2017 Jun; 22():39-49. PubMed ID: 28189057 [TBL] [Abstract][Full Text] [Related]
26. Responses of denervated adult newt limb stumps to reinnervation and reinjury. Salley JD; Tassava RA J Exp Zool; 1981 Feb; 215(2):183-9. PubMed ID: 7024467 [TBL] [Abstract][Full Text] [Related]
27. iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus. Gao K; Deng XY; Shang MK; Qin GX; Hou CX; Guo XJ J Proteomics; 2017 Jan; 152():300-311. PubMed ID: 27908826 [TBL] [Abstract][Full Text] [Related]
28. Proteomic analysis of the skin from Chinese fire-bellied newt and comparison to Chinese giant salamander. Sun J; Geng X; Guo J; Zang X; Li P; Li D; Xu C Comp Biochem Physiol Part D Genomics Proteomics; 2016 Sep; 19():71-77. PubMed ID: 27343457 [TBL] [Abstract][Full Text] [Related]
29. An iTRAQ approach to quantitative proteome analysis of cerebrospinal fluid from patients with tuberculous meningitis. Ou Q; Liu X; Cheng X Biosci Trends; 2013 Aug; 7(4):186-92. PubMed ID: 24056169 [TBL] [Abstract][Full Text] [Related]
30. Quantitative proteomic analysis of serum proteins in patients with Parkinson's disease using an isobaric tag for relative and absolute quantification labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. Zhang X; Yin X; Yu H; Liu X; Yang F; Yao J; Jin H; Yang P Analyst; 2012 Jan; 137(2):490-5. PubMed ID: 22108571 [TBL] [Abstract][Full Text] [Related]
31. Effect of beta-amino-propionitrile on the regenerating newt limb evaluated by uptake of 3H-proline and 3H-lysine. Herskovits MS; Singh IJ; Mitchell OG; Goren AD; Moskowitz G; Sciubba JJ Growth; 1987; 51(1):44-9. PubMed ID: 3114054 [TBL] [Abstract][Full Text] [Related]
32. Proteomic Analysis Reveals Resistance Mechanism Against Chlorpyrifos in Frankliniella occidentalis (Thysanoptera: Thripidae). Yan DK; Hu M; Tang YX; Fan JQ J Econ Entomol; 2015 Aug; 108(4):2000-8. PubMed ID: 26470346 [TBL] [Abstract][Full Text] [Related]
33. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Sandoval-Guzmán T; Wang H; Khattak S; Schuez M; Roensch K; Nacu E; Tazaki A; Joven A; Tanaka EM; Simon A Cell Stem Cell; 2014 Feb; 14(2):174-87. PubMed ID: 24268695 [TBL] [Abstract][Full Text] [Related]
34. Two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification (iTRAQ) labeling approach revealed first proteome profiles of pulmonary alveolar macrophages infected with porcine circovirus type 2. Liu J; Bai J; Lu Q; Zhang L; Jiang Z; Michal JJ; He Q; Jiang P J Proteomics; 2013 Feb; 79():72-86. PubMed ID: 23238063 [TBL] [Abstract][Full Text] [Related]
35. iTRAQ-based quantitative proteomic analysis of the global response to 17β-estradiol in estrogen-degradation strain Pseudomonas putida SJTE-1. Xu J; Zhang L; Hou J; Wang X; Liu H; Zheng D; Liang R Sci Rep; 2017 Feb; 7():41682. PubMed ID: 28155874 [TBL] [Abstract][Full Text] [Related]
36. Cell origin and identity in limb regeneration and development. Ferretti P; Brockes JP Glia; 1991; 4(2):214-24. PubMed ID: 1709617 [TBL] [Abstract][Full Text] [Related]
37. Injury to nerves and the initiation of amphibian limb regeneration. Mescher AL Am J Anat; 1984 Mar; 169(3):273-84. PubMed ID: 6720615 [TBL] [Abstract][Full Text] [Related]
38. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. Bouchal P; Roumeliotis T; Hrstka R; Nenutil R; Vojtesek B; Garbis SD J Proteome Res; 2009 Jan; 8(1):362-73. PubMed ID: 19053527 [TBL] [Abstract][Full Text] [Related]
39. Using transcriptomics to enable a plethodontid salamander (Bolitoglossa ramosi) for limb regeneration research. Arenas Gómez CM; Woodcock RM; Smith JJ; Voss RS; Delgado JP BMC Genomics; 2018 Sep; 19(1):704. PubMed ID: 30253734 [TBL] [Abstract][Full Text] [Related]
40. Reduction of the current of injury leaving the amputation inhibits limb regeneration in the red spotted newt. Jenkins LS; Duerstock BS; Borgens RB Dev Biol; 1996 Sep; 178(2):251-62. PubMed ID: 8812127 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]