These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28939036)

  • 21. Dynamic reorganization of the endomembrane system during spermatogenesis in Marchantia polymorpha.
    Minamino N; Kanazawa T; Nishihama R; Yamato KT; Ishizaki K; Kohchi T; Nakano A; Ueda T
    J Plant Res; 2017 May; 130(3):433-441. PubMed ID: 28160149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insights into eukaryotic evolution from transmembrane domain lengths.
    Mittal A; Singh S
    J Biomol Struct Dyn; 2018 Jun; 36(8):2194-2200. PubMed ID: 28641482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Longin-like folds identified in CHiPS and DUF254 proteins: vesicle trafficking complexes conserved in eukaryotic evolution.
    Kinch LN; Grishin NV
    Protein Sci; 2006 Nov; 15(11):2669-74. PubMed ID: 17075139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants.
    Plattner H
    J Eukaryot Microbiol; 2018 Mar; 65(2):255-289. PubMed ID: 28719054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiological Roles of Plant Post-Golgi Transport Pathways in Membrane Trafficking.
    Uemura T
    Plant Cell Physiol; 2016 Oct; 57(10):2013-2019. PubMed ID: 27649735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracing the Archaeal Origins of Eukaryotic Membrane-Trafficking System Building Blocks.
    Klinger CM; Spang A; Dacks JB; Ettema TJ
    Mol Biol Evol; 2016 Jun; 33(6):1528-41. PubMed ID: 26893300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trafficking vesicles: pro or contra pathogens?
    Frei dit Frey N; Robatzek S
    Curr Opin Plant Biol; 2009 Aug; 12(4):437-43. PubMed ID: 19608452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting the distribution, conservation, and functions of SNAREs and related proteins in fungi.
    Gupta GD; Brent Heath I
    Fungal Genet Biol; 2002 Jun; 36(1):1-21. PubMed ID: 12051891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Ypt/Rab family and the evolution of trafficking in fungi.
    Pereira-Leal JB
    Traffic; 2008 Jan; 9(1):27-38. PubMed ID: 17973655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chapter 4: functions of RAB and SNARE proteins in plant life.
    Saito C; Ueda T
    Int Rev Cell Mol Biol; 2009; 274():183-233. PubMed ID: 19349038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Helping hands for budding prospects: ENTH/ANTH/VHS accessory proteins in endocytosis, vacuolar transport, and secretion.
    Zouhar J; Sauer M
    Plant Cell; 2014 Nov; 26(11):4232-44. PubMed ID: 25415979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exocytic trafficking pathways in plants: why and how they are redirected.
    Kanazawa T; Ueda T
    New Phytol; 2017 Aug; 215(3):952-957. PubMed ID: 28543308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motif-based endomembrane trafficking.
    Arora D; Damme DV
    Plant Physiol; 2021 May; 186(1):221-238. PubMed ID: 33605419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes.
    Field MC; Dacks JB
    Curr Opin Cell Biol; 2009 Feb; 21(1):4-13. PubMed ID: 19201590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rab GTPases: master regulators that establish the secretory and endocytic pathways.
    Pfeffer SR
    Mol Biol Cell; 2017 Mar; 28(6):712-715. PubMed ID: 28292916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rab protein evolution and the history of the eukaryotic endomembrane system.
    Brighouse A; Dacks JB; Field MC
    Cell Mol Life Sci; 2010 Oct; 67(20):3449-65. PubMed ID: 20582450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How can mammalian Rab small GTPases be comprehensively analyzed?: Development of new tools to comprehensively analyze mammalian Rabs in membrane traffic.
    Fukuda M
    Histol Histopathol; 2010 Nov; 25(11):1473-80. PubMed ID: 20865669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Longin and GAF domains: structural evolution and adaptation to the subcellular trafficking machinery.
    De Franceschi N; Wild K; Schlacht A; Dacks JB; Sinning I; Filippini F
    Traffic; 2014 Jan; 15(1):104-21. PubMed ID: 24107188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wine glasses and hourglasses: Non-adaptive complexity of vesicle traffic in microbial eukaryotes.
    Mani S; Thattai M
    Mol Biochem Parasitol; 2016; 209(1-2):58-63. PubMed ID: 27012485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membranes, trafficking, and signaling during animal development.
    Vincent JP
    Cell; 2003 Mar; 112(6):745-9. PubMed ID: 12654242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.