BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28939423)

  • 1. Evaluation of nine popular de novo assemblers in microbial genome assembly.
    Forouzan E; Maleki MSM; Karkhane AA; Yakhchali B
    J Microbiol Methods; 2017 Dec; 143():32-37. PubMed ID: 28939423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical evaluation of 11 de novo assemblers in metagenome assembly.
    Forouzan E; Shariati P; Mousavi Maleki MS; Karkhane AA; Yakhchali B
    J Microbiol Methods; 2018 Aug; 151():99-105. PubMed ID: 29953874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking and Assessment of Eight
    Gupta AK; Kumar M
    OMICS; 2022 Jul; 26(7):372-381. PubMed ID: 35759429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.
    Desai A; Marwah VS; Yadav A; Jha V; Dhaygude K; Bangar U; Kulkarni V; Jere A
    PLoS One; 2013; 8(4):e60204. PubMed ID: 23593174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating long-read de novo assembly tools for eukaryotic genomes: insights and considerations.
    Cosma BM; Shirali Hossein Zade R; Jordan EN; van Lent P; Peng C; Pillay S; Abeel T
    Gigascience; 2022 Dec; 12():. PubMed ID: 38000912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth.
    Peng Y; Leung HC; Yiu SM; Chin FY
    Bioinformatics; 2012 Jun; 28(11):1420-8. PubMed ID: 22495754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of k-spectrum-based error correction methods for next-generation sequencing data analysis.
    Akogwu I; Wang N; Zhang C; Gong P
    Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):20. PubMed ID: 27461106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms.
    Cerveau N; Jackson DJ
    BMC Bioinformatics; 2016 Dec; 17(1):525. PubMed ID: 27938328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InteMAP: Integrated metagenomic assembly pipeline for NGS short reads.
    Lai B; Wang F; Wang X; Duan L; Zhu H
    BMC Bioinformatics; 2015 Aug; 16():244. PubMed ID: 26250558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of metagenomic assemblers based on hybrid reads of real and simulated metagenomic sequences.
    Wang Z; Wang Y; Fuhrman JA; Sun F; Zhu S
    Brief Bioinform; 2020 May; 21(3):777-790. PubMed ID: 30860572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. dipSPAdes: Assembler for Highly Polymorphic Diploid Genomes.
    Safonova Y; Bankevich A; Pevzner PA
    J Comput Biol; 2015 Jun; 22(6):528-45. PubMed ID: 25734602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetaVelvet-SL: an extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning.
    Afiahayati ; Sato K; Sakakibara Y
    DNA Res; 2015 Feb; 22(1):69-77. PubMed ID: 25431440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads.
    Al-Okaily AA
    BMC Genomics; 2016 Mar; 17():193. PubMed ID: 26945881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of de novo assemblers for draft genomes: a case study with fungal genomes.
    Abbas MM; Malluhi QM; Balakrishnan P
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S10. PubMed ID: 25521762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing and evaluating the reconstruction of Metagenome-assembled microbial genomes.
    Papudeshi B; Haggerty JM; Doane M; Morris MM; Walsh K; Beattie DT; Pande D; Zaeri P; Silva GGZ; Thompson F; Edwards RA; Dinsdale EA
    BMC Genomics; 2017 Nov; 18(1):915. PubMed ID: 29183281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LMAS: evaluating metagenomic short de novo assembly methods through defined communities.
    Mendes CI; Vila-Cerqueira P; Motro Y; Moran-Gilad J; Carriço JA; Ramirez M
    Gigascience; 2022 Dec; 12():. PubMed ID: 36576131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.