BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 28939501)

  • 41. Transcription factor-mediated reprogramming: epigenetics and therapeutic potential.
    Firas J; Liu X; Lim SM; Polo JM
    Immunol Cell Biol; 2015 Mar; 93(3):284-9. PubMed ID: 25643615
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Progress and Challenges of Cell Replacement Therapy for Neurodegenerative Diseases Based on Direct Neural Reprogramming.
    Chen Y; Pu J; Zhang B
    Hum Gene Ther; 2016 Dec; 27(12):962-970. PubMed ID: 27589383
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advances in reprogramming-based study of neurologic disorders.
    Nityanandam A; Baldwin KK
    Stem Cells Dev; 2015 Jun; 24(11):1265-83. PubMed ID: 25749371
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Reprogramming of somatic cells. Problems and solutions].
    Schneider TA; Fishman VS; Liskovykh MA; Ponamartsev SV; Serov OL; Tomilin AN; Alenina N
    Tsitologiia; 2014; 56(12):869-80. PubMed ID: 25929128
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Epigenetic Control of Reprogramming and Transdifferentiation by Histone Modifications.
    Qin H; Zhao A; Zhang C; Fu X
    Stem Cell Rev Rep; 2016 Dec; 12(6):708-720. PubMed ID: 27623868
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Induced neural stem cells as a means of treatment in Huntington's disease.
    Choi KA; Hong S
    Expert Opin Biol Ther; 2017 Nov; 17(11):1333-1343. PubMed ID: 28792249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Induced regeneration--the progress and promise of direct reprogramming for heart repair.
    Addis RC; Epstein JA
    Nat Med; 2013 Jul; 19(7):829-36. PubMed ID: 23836233
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Generation of keratinocyte stem-like cells from human fibroblasts via a direct reprogramming approach.
    Zhao A; Yang Y; Pan X; Pan Y; Cai S
    Biotechnol Prog; 2020 May; 36(3):e2961. PubMed ID: 31930712
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chemical reprogramming and transdifferentiation.
    Xie X; Fu Y; Liu J
    Curr Opin Genet Dev; 2017 Oct; 46():104-113. PubMed ID: 28755566
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Generation of Integration-free Induced Neural Stem Cells from Mouse Fibroblasts.
    Kim SM; Kim JW; Kwak TH; Park SW; Kim KP; Park H; Lim KT; Kang K; Kim J; Yang JH; Han H; Lee I; Hyun JK; Bae YM; Schöler HR; Lee HT; Han DW
    J Biol Chem; 2016 Jul; 291(27):14199-14212. PubMed ID: 27189941
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors.
    Kim HS; Kim J; Jo Y; Jeon D; Cho YS
    Stem Cell Res; 2014 Jan; 12(1):60-8. PubMed ID: 24145188
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A predictive computational framework for direct reprogramming between human cell types.
    Rackham OJ; Firas J; Fang H; Oates ME; Holmes ML; Knaupp AS; ; Suzuki H; Nefzger CM; Daub CO; Shin JW; Petretto E; Forrest AR; Hayashizaki Y; Polo JM; Gough J
    Nat Genet; 2016 Mar; 48(3):331-5. PubMed ID: 26780608
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors.
    Sheng C; Zheng Q; Wu J; Xu Z; Wang L; Li W; Zhang H; Zhao XY; Liu L; Wang Z; Guo C; Wu HJ; Liu Z; Wang L; He S; Wang XJ; Chen Z; Zhou Q
    Cell Res; 2012 Jan; 22(1):208-18. PubMed ID: 22064700
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds.
    Ye J; Ge J; Zhang X; Cheng L; Zhang Z; He S; Wang Y; Lin H; Yang W; Liu J; Zhao Y; Deng H
    Cell Res; 2016 Jan; 26(1):34-45. PubMed ID: 26704449
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.
    Sridhar A; Ohlemacher SK; Langer KB; Meyer JS
    Stem Cells Transl Med; 2016 Apr; 5(4):417-26. PubMed ID: 26933039
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Concise review: Oct4 and more: the reprogramming expressway.
    Sterneckert J; Höing S; Schöler HR
    Stem Cells; 2012 Jan; 30(1):15-21. PubMed ID: 22009686
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells.
    Kim YM; Kang YG; Park SH; Han MK; Kim JH; Shin JW; Shin JW
    Stem Cell Res Ther; 2017 Jun; 8(1):139. PubMed ID: 28595633
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Induced Pluripotency: A Powerful Tool for In Vitro Modeling.
    Zahumenska R; Nosal V; Smolar M; Okajcekova T; Skovierova H; Strnadel J; Halasova E
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255453
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pluripotent reprogramming and lineage reprogramming: promises and challenges in cardiovascular regeneration.
    He WJ; Hou Q; Han QW; Han WD; Fu XB
    Tissue Eng Part B Rev; 2014 Aug; 20(4):304-13. PubMed ID: 24063625
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generation of neural stem cells from adult astrocytes by using a single reprogramming factor.
    Zarei-Kheirabadi M; Hesaraki M; Shojaei A; Kiani S; Baharvand H
    J Cell Physiol; 2019 Aug; 234(10):18697-18706. PubMed ID: 30912162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.