BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28939659)

  • 21. Large domain motions in Ago protein controlled by the guide DNA-strand seed region determine the Ago-DNA-mRNA complex recognition process.
    Xia Z; Huynh T; Ren P; Zhou R
    PLoS One; 2013; 8(1):e54620. PubMed ID: 23382927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multivalent Recruitment of Human Argonaute by GW182.
    Elkayam E; Faehnle CR; Morales M; Sun J; Li H; Joshua-Tor L
    Mol Cell; 2017 Aug; 67(4):646-658.e3. PubMed ID: 28781232
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-Molecule Imaging Reveals that Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides.
    Salomon WE; Jolly SM; Moore MJ; Zamore PD; Serebrov V
    Cell; 2015 Jul; 162(1):84-95. PubMed ID: 26140592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global analysis of AGO2-bound RNAs reveals that miRNAs induce cleavage of target RNAs with limited complementarity.
    Jung E; Seong Y; Jeon B; Song H; Kwon YS
    Biochim Biophys Acta Gene Regul Mech; 2017 Nov; 1860(11):1148-1158. PubMed ID: 29031931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. miRNA Targeting: Growing beyond the Seed.
    Chipman LB; Pasquinelli AE
    Trends Genet; 2019 Mar; 35(3):215-222. PubMed ID: 30638669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Click RNA for Rapid Capture and Identification of Intracellular MicroRNA Targets.
    Zhang P; Fu H; Du S; Wang F; Yang J; Cai W; Liu D
    Anal Chem; 2019 Dec; 91(24):15740-15747. PubMed ID: 31714070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The structure of human argonaute-2 in complex with miR-20a.
    Elkayam E; Kuhn CD; Tocilj A; Haase AD; Greene EM; Hannon GJ; Joshua-Tor L
    Cell; 2012 Jul; 150(1):100-10. PubMed ID: 22682761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binding-induced functional-domain motions in the Argonaute characterized by adaptive advanced sampling.
    Pourjafar-Dehkordi D; Zacharias M
    PLoS Comput Biol; 2021 Nov; 17(11):e1009625. PubMed ID: 34843451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression.
    Takimoto K; Wakiyama M; Yokoyama S
    RNA; 2009 Jun; 15(6):1078-89. PubMed ID: 19398495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Base-pair conformational switch modulates miR-34a targeting of Sirt1 mRNA.
    Baronti L; Guzzetti I; Ebrahimi P; Friebe Sandoz S; Steiner E; Schlagnitweit J; Fromm B; Silva L; Fontana C; Chen AA; Petzold K
    Nature; 2020 Jul; 583(7814):139-144. PubMed ID: 32461691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets.
    Khorshid M; Hausser J; Zavolan M; van Nimwegen E
    Nat Methods; 2013 Mar; 10(3):253-5. PubMed ID: 23334102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase Transitions in the Assembly and Function of Human miRISC.
    Sheu-Gruttadauria J; MacRae IJ
    Cell; 2018 May; 173(4):946-957.e16. PubMed ID: 29576456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis.
    Srivastava M; Duan G; Kershaw NJ; Athanasopoulos V; Yeo JH; Ose T; Hu D; Brown SH; Jergic S; Patel HR; Pratama A; Richards S; Verma A; Jones EY; Heissmeyer V; Preiss T; Dixon NE; Chong MM; Babon JJ; Vinuesa CG
    Nat Commun; 2015 Feb; 6():6253. PubMed ID: 25697406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly complementary target RNAs promote release of guide RNAs from human Argonaute2.
    De N; Young L; Lau PW; Meisner NC; Morrissey DV; MacRae IJ
    Mol Cell; 2013 May; 50(3):344-55. PubMed ID: 23664376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. miRNA-target chimeras reveal miRNA 3'-end pairing as a major determinant of Argonaute target specificity.
    Moore MJ; Scheel TK; Luna JM; Park CY; Fak JJ; Nishiuchi E; Rice CM; Darnell RB
    Nat Commun; 2015 Nov; 6():8864. PubMed ID: 26602609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Role of Tertiary Structure in MicroRNA Target Recognition.
    Gan HH; Gunsalus KC
    Methods Mol Biol; 2019; 1970():43-64. PubMed ID: 30963487
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imaging translational control by Argonaute with single-molecule resolution in live cells.
    Cialek CA; Galindo G; Morisaki T; Zhao N; Montgomery TA; Stasevich TJ
    Nat Commun; 2022 Jun; 13(1):3345. PubMed ID: 35688806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and mechanistic insights into an archaeal DNA-guided Argonaute protein.
    Willkomm S; Oellig CA; Zander A; Restle T; Keegan R; Grohmann D; Schneider S
    Nat Microbiol; 2017 Mar; 2():17035. PubMed ID: 28319084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel class of microRNA-recognition elements that function only within open reading frames.
    Zhang K; Zhang X; Cai Z; Zhou J; Cao R; Zhao Y; Chen Z; Wang D; Ruan W; Zhao Q; Liu G; Xue Y; Qin Y; Zhou B; Wu L; Nilsen T; Zhou Y; Fu XD
    Nat Struct Mol Biol; 2018 Nov; 25(11):1019-1027. PubMed ID: 30297778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Widespread microRNA degradation elements in target mRNAs can assist the encoded proteins.
    Li L; Sheng P; Li T; Fields CJ; Hiers NM; Wang Y; Li J; Guardia CM; Licht JD; Xie M
    Genes Dev; 2021 Dec; 35(23-24):1595-1609. PubMed ID: 34819352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.