These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28939809)

  • 21. Analysis of radiation force on a uniaxial anisotropic sphere by dual counter-propagating Gaussian beams.
    Li ZJ; Li S; Li HY; Qu T; Shang QC
    J Opt Soc Am A Opt Image Sci Vis; 2021 May; 38(5):616-627. PubMed ID: 33983266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiation forces on a Rayleigh particle by highly focused radially polarized beams modulated by DVL.
    Zhang R; Chen Z; Pu J; Jones PH
    J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):797-802. PubMed ID: 26366903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Propagation properties and radiation forces of the Airy Gaussian vortex beams in a harmonic potential.
    Pang Z; Deng D
    Opt Express; 2017 Jun; 25(12):13635-13647. PubMed ID: 28788906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime.
    Ashkin A
    Biophys J; 1992 Feb; 61(2):569-82. PubMed ID: 19431818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams.
    Zhao C; Cai Y; Korotkova O
    Opt Express; 2009 Nov; 17(24):21472-87. PubMed ID: 19997388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radiation force exerted on a sphere by focused Laguerre-Gaussian beams.
    Yu H; She W
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jan; 32(1):130-42. PubMed ID: 26366497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory.
    Ambrosio LA; Hernández-Figueroa HE
    Biomed Opt Express; 2010 Nov; 1(5):1284-1301. PubMed ID: 21258549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analytical calculation of axial optical force on a Rayleigh particle illuminated by Gaussian beams beyond the paraxial approximation.
    Chen J; Ng J; Liu S; Lin Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026607. PubMed ID: 19792272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle.
    Zhao C; Cai Y; Lu X; Eyyuboğlu HT
    Opt Express; 2009 Feb; 17(3):1753-65. PubMed ID: 19189005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime.
    Ashkin A
    Methods Cell Biol; 1998; 55():1-27. PubMed ID: 9352508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Directional scattering and multipolar contributions to optical forces on silicon nanoparticles in focused laser beams.
    Länk NO; Johansson P; Käll M
    Opt Express; 2018 Oct; 26(22):29074-29085. PubMed ID: 30470074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiation forces on a Rayleigh particle by highly focused partially coherent and radially polarized vortex beams.
    Shu J; Chen Z; Pu J
    J Opt Soc Am A Opt Image Sci Vis; 2013 May; 30(5):916-22. PubMed ID: 23695323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inversion of gradient forces for high refractive index particles in optical trapping.
    Ambrosio LA; Hernández-Figueroa HE
    Opt Express; 2010 Mar; 18(6):5802-8. PubMed ID: 20389597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime.
    Ambrosio LA; Hernández-Figueroa HE
    Opt Express; 2010 Nov; 18(23):24287-92. PubMed ID: 21164774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trapping forces in a multiple-beam fiber-optic trap.
    Sidick E; Collins SD; Knoesen A
    Appl Opt; 1997 Sep; 36(25):6423-33. PubMed ID: 18259500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical trapping of microparticles with two tilted-focused laser beams.
    Meng C; Shao M; Zhang XF; Zhang LS; Chen D; Zhong MC
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37409910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical radiation force on a dielectric sphere by a polarized Airy beam.
    Tang H; Sun H; Li R; Yang L; Song N; Zhang S; Wei B; Zhu Z; Wei B; Gong S; Mitri FG
    J Opt Soc Am A Opt Image Sci Vis; 2022 Nov; 39(11):2090-2103. PubMed ID: 36520706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On-Axis Optical Trapping with Vortex Beams: The Role of the Multipolar Decomposition.
    Gómez-Viloria I; Nodar Á; Molezuelas-Ferreras M; Olmos-Trigo J; Cifuentes Á; Martínez M; Varga M; Molina-Terriza G
    ACS Photonics; 2024 Feb; 11(2):626-633. PubMed ID: 38405395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.