BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 28939824)

  • 1. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.
    Chen X; Janssen JM; Liu J; Maggio I; 't Jong AEJ; Mikkers HMM; Gonçalves MAFV
    Nat Commun; 2017 Sep; 8(1):657. PubMed ID: 28939824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the editable genome and CRISPR-Cas9 versatility using DNA cutting-free gene targeting based on in trans paired nicking.
    Chen X; Tasca F; Wang Q; Liu J; Janssen JM; Brescia MD; Bellin M; Szuhai K; Kenrick J; Frock RL; Gonçalves MAFV
    Nucleic Acids Res; 2020 Jan; 48(2):974-995. PubMed ID: 31799604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise homology-directed installation of large genomic edits in human cells with cleaving and nicking high-specificity Cas9 variants.
    Wang Q; Liu J; Janssen JM; Gonçalves MAFV
    Nucleic Acids Res; 2023 Apr; 51(7):3465-3484. PubMed ID: 36928106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion.
    Shou J; Li J; Liu Y; Wu Q
    Mol Cell; 2018 Aug; 71(4):498-509.e4. PubMed ID: 30033371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Baculovirus-based genome editing in primary cells.
    Mansouri M; Ehsaei Z; Taylor V; Berger P
    Plasmid; 2017 Mar; 90():5-9. PubMed ID: 28119062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing.
    Miyaoka Y; Berman JR; Cooper SB; Mayerl SJ; Chan AH; Zhang B; Karlin-Neumann GA; Conklin BR
    Sci Rep; 2016 Mar; 6():23549. PubMed ID: 27030102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of single guided Cas9 nickase to facilitate precise and efficient genome editing in human iPSCs.
    Li PP; Margolis RL
    Sci Rep; 2021 May; 11(1):9865. PubMed ID: 33972655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision genome editing in the CRISPR era.
    Salsman J; Dellaire G
    Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new inducible CRISPR-Cas9 system useful for genome editing and study of double-strand break repair in Candida glabrata.
    Maroc L; Fairhead C
    Yeast; 2019 Dec; 36(12):723-731. PubMed ID: 31423617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks.
    Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental strategies to achieve efficient targeted knock-in via tandem paired nicking.
    Rahman ML; Hyodo T; Karnan S; Ota A; Hasan MN; Mihara Y; Wahiduzzaman M; Tsuzuki S; Hosokawa Y; Konishi H
    Sci Rep; 2021 Nov; 11(1):22627. PubMed ID: 34799652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens.
    Collonnier C; Guyon-Debast A; Maclot F; Mara K; Charlot F; Nogué F
    Methods; 2017 May; 121-122():103-117. PubMed ID: 28478103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus.
    Bothmer A; Phadke T; Barrera LA; Margulies CM; Lee CS; Buquicchio F; Moss S; Abdulkerim HS; Selleck W; Jayaram H; Myer VE; Cotta-Ramusino C
    Nat Commun; 2017 Jan; 8():13905. PubMed ID: 28067217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise and efficient nucleotide substitution near genomic nick via noncanonical homology-directed repair.
    Nakajima K; Zhou Y; Tomita A; Hirade Y; Gurumurthy CB; Nakada S
    Genome Res; 2018 Feb; 28(2):223-230. PubMed ID: 29273627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-scale CRISPR screens are efficient in non-homologous end-joining deficient cells.
    Ferreira da Silva J; Salic S; Wiedner M; Datlinger P; Essletzbichler P; Hanzl A; Superti-Furga G; Bock C; Winter G; Loizou JI
    Sci Rep; 2019 Oct; 9(1):15751. PubMed ID: 31673055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On- and off-target effects of paired CRISPR-Cas nickase in primary human cells.
    Klermund J; Rhiel M; Kocher T; Chmielewski KO; Bischof J; Andrieux G; El Gaz M; Hainzl S; Boerries M; Cornu TI; Koller U; Cathomen T
    Mol Ther; 2024 May; 32(5):1298-1310. PubMed ID: 38459694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.