BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28940053)

  • 1. The Influence of Body Mass Index, Sex, & Muscle Activation on Pressure Distribution During Lateral Falls on the Hip.
    Pretty SP; Martel DR; Laing AC
    Ann Biomed Eng; 2017 Dec; 45(12):2775-2783. PubMed ID: 28940053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of muscle activation on impact dynamics during lateral falls on the hip.
    Martel DR; Levine IC; Pretty SP; Laing AC
    J Biomech; 2018 Jan; 66():111-118. PubMed ID: 29153707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hip protectors, falling angle and body mass index on pressure distribution over the hip during simulated falls.
    Choi WJ; Hoffer JA; Robinovitch SN
    Clin Biomech (Bristol, Avon); 2010 Jan; 25(1):63-9. PubMed ID: 19766363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy absorption during impact on the proximal femur is affected by body mass index and flooring surface.
    Bhan S; Levine IC; Laing AC
    J Biomech; 2014 Jul; 47(10):2391-7. PubMed ID: 24837217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of body mass index and sex on impact force and effective pelvic stiffness during simulated lateral falls.
    Levine IC; Bhan S; Laing AC
    Clin Biomech (Bristol, Avon); 2013; 28(9-10):1026-33. PubMed ID: 24466589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pelvis and femur geometry: Relationships with impact characteristics during sideways falls on the hip.
    Levine IC; Pretty SP; Nouri PK; Mourtzakis M; Laing AC
    J Biomech; 2018 Oct; 80():72-78. PubMed ID: 30201251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors that influence the distribution of impact force relative to the proximal femur during lateral falls.
    Pretty SP; Levine IC; Laing AC
    J Biomech; 2021 Oct; 127():110679. PubMed ID: 34418865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of femoral impact forces in falls on the hip.
    Robinovitch SN; Hayes WC; McMahon TA
    J Biomech Eng; 1991 Nov; 113(4):366-74. PubMed ID: 1762432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The force attenuation provided by hip protectors depends on impact velocity, pelvic size, and soft tissue stiffness.
    Laing AC; Robinovitch SN
    J Biomech Eng; 2008 Dec; 130(6):061005. PubMed ID: 19045534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors that influence soft tissue thickness over the greater trochanter: application to understanding hip fractures.
    Levine IC; Minty LE; Laing AC
    Clin Anat; 2015 Mar; 28(2):253-61. PubMed ID: 25546649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the effective stiffness of the pelvis during sideways falls on the hip.
    Laing AC; Robinovitch SN
    J Biomech; 2010 Jul; 43(10):1898-904. PubMed ID: 20398905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomically Aligned Loading During Falls: Influence of Fall Protocol, Sex and Trochanteric Soft Tissue Thickness.
    Pretty SP; Levine IC; Laing AC
    Ann Biomed Eng; 2021 Dec; 49(12):3267-3279. PubMed ID: 34494215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pelvis impact angle on stresses at the femoral neck during falls.
    Choi WJ; Robinovitch SN
    J Biomech; 2018 Jun; 74():41-49. PubMed ID: 29691053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of hip fracture risk in relation to fall direction.
    Nankaku M; Kanzaki H; Tsuboyama T; Nakamura T
    Osteoporos Int; 2005 Nov; 16(11):1315-20. PubMed ID: 15719152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hip muscle activation on the stiffness and energy absorption of the trochanteric soft tissue during impact in sideways falls.
    Kim SS; Lim KT; Park JW; Choi JW; Yi CH; Robinovitch SN; Choi WJ
    J Mech Behav Biomed Mater; 2023 Feb; 138():105622. PubMed ID: 36538838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body.
    Majumder S; Roychowdhury A; Pal S
    Med Eng Phys; 2007 Dec; 29(10):1167-78. PubMed ID: 17270483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of soft shell hip protectors on pressure distribution to the hip during sideways falls.
    Laing AC; Robinovitch SN
    Osteoporos Int; 2008 Jul; 19(7):1067-75. PubMed ID: 18338098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of sex differences in the association between hip fracture risk and body parameters by DXA-based biomechanical modeling.
    Nasiri M; Luo Y
    Bone; 2016 Sep; 90():90-8. PubMed ID: 27292653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of individual muscles to hip joint contact force in normal walking.
    Correa TA; Crossley KM; Kim HJ; Pandy MG
    J Biomech; 2010 May; 43(8):1618-22. PubMed ID: 20176362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trochanteric transfer in total hip replacement: effects on the moment arms and force-generating capacities of the hip abductors.
    Free SA; Delp SL
    J Orthop Res; 1996 Mar; 14(2):245-50. PubMed ID: 8648502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.