These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 28940098)
1. Bioelectrochemical system for the biooxidation of a chalcopyrite concentrate by acidophilic bacteria coupled to energy current generation and cathodic copper recovery. Fernández-Reyes JS; García-Meza JV Biotechnol Lett; 2018 Jan; 40(1):63-73. PubMed ID: 28940098 [TBL] [Abstract][Full Text] [Related]
2. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans. Lara RH; García-Meza JV; González I; Cruz R Appl Microbiol Biotechnol; 2013 Mar; 97(6):2711-24. PubMed ID: 22584430 [TBL] [Abstract][Full Text] [Related]
3. Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching. Zhu J; Jiao W; Li Q; Liu X; Qin W; Qiu G; Hu Y; Chai L J Ind Microbiol Biotechnol; 2012 Dec; 39(12):1833-40. PubMed ID: 22968225 [TBL] [Abstract][Full Text] [Related]
4. Changes in biofilm structure during the colonization of chalcopyrite by Acidithiobacillus thiooxidans. García-Meza JV; Fernández JJ; Lara RH; González I Appl Microbiol Biotechnol; 2013 Jul; 97(13):6065-75. PubMed ID: 23053079 [TBL] [Abstract][Full Text] [Related]
5. Adaptive mechanism of Acidithiobacillus thiooxidans CCTCC M 2012104 under stress during bioleaching of low-grade chalcopyrite based on physiological and comparative transcriptomic analysis. Yin Z; Feng S; Tong Y; Yang H J Ind Microbiol Biotechnol; 2019 Dec; 46(12):1643-1656. PubMed ID: 31420797 [TBL] [Abstract][Full Text] [Related]
6. Biofilm Formation Is Crucial for Efficient Copper Bioleaching From Bornite Under Mesophilic Conditions: Unveiling the Lifestyle and Catalytic Role of Sulfur-Oxidizing Bacteria. Bobadilla-Fazzini RA; Poblete-Castro I Front Microbiol; 2021; 12():761997. PubMed ID: 34745072 [TBL] [Abstract][Full Text] [Related]
7. Bioleaching of chalcopyrite concentrate using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in a continuous bubble column reactor. Xia L; Yin C; Dai S; Qiu G; Chen X; Liu J J Ind Microbiol Biotechnol; 2010 Mar; 37(3):289-95. PubMed ID: 20012335 [TBL] [Abstract][Full Text] [Related]
8. Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite. Zhu J; Li Q; Jiao W; Jiang H; Sand W; Xia J; Liu X; Qin W; Qiu G; Hu Y; Chai L Colloids Surf B Biointerfaces; 2012 Jun; 94():95-100. PubMed ID: 22341516 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical monitoring of Acidithiobacillus thiooxidans biofilm formation on graphite surface with elemental sulfur. Méndez-Tovar M; García-Meza JV; González I Bioelectrochemistry; 2019 Aug; 128():30-38. PubMed ID: 30909069 [TBL] [Abstract][Full Text] [Related]
10. Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilum Christel S; Herold M; Bellenberg S; El Hajjami M; Buetti-Dinh A; Pivkin IV; Sand W; Wilmes P; Poetsch A; Dopson M Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150517 [No Abstract] [Full Text] [Related]
12. The bioleaching potential of a bacterial consortium. Latorre M; Cortés MP; Travisany D; Di Genova A; Budinich M; Reyes-Jara A; Hödar C; González M; Parada P; Bobadilla-Fazzini RA; Cambiazo V; Maass A Bioresour Technol; 2016 Oct; 218():659-66. PubMed ID: 27416516 [TBL] [Abstract][Full Text] [Related]
13. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching. Feng S; Yang H; Wang W Bioresour Technol; 2015 Sep; 191():37-44. PubMed ID: 25978855 [TBL] [Abstract][Full Text] [Related]
14. Coupling of anodic biooxidation and cathodic bioelectro-Fenton for enhanced swine wastewater treatment. Xu N; Zhou S; Yuan Y; Qin H; Zheng Y; Shu C Bioresour Technol; 2011 Sep; 102(17):7777-83. PubMed ID: 21715164 [TBL] [Abstract][Full Text] [Related]
15. Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic. Hong J; Silva RA; Park J; Lee E; Park J; Kim H J Biosci Bioeng; 2016 May; 121(5):536-42. PubMed ID: 26481159 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of nickel resistance of pure culture and co-culture of Acidithiobacillus thiooxidans and Leptospirillum ferriphilum. Xu Y; Yin H; Jiang H; Liang Y; Guo X; Ma L; Xiao Y; Liu X Arch Microbiol; 2013 Sep; 195(9):637-46. PubMed ID: 23861147 [TBL] [Abstract][Full Text] [Related]
17. Acidithiobacillus thiooxidans and its potential application. Yang L; Zhao D; Yang J; Wang W; Chen P; Zhang S; Yan L Appl Microbiol Biotechnol; 2019 Oct; 103(19):7819-7833. PubMed ID: 31463545 [TBL] [Abstract][Full Text] [Related]
18. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Wang J; Bai J; Xu J; Liang B J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031 [TBL] [Abstract][Full Text] [Related]
19. Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. Valdes J; Ossandon F; Quatrini R; Dopson M; Holmes DS J Bacteriol; 2011 Dec; 193(24):7003-4. PubMed ID: 22123759 [TBL] [Abstract][Full Text] [Related]