These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2894034)

  • 21. Identification of the active site of vertebrate oxidosqualene cyclase.
    Abe I; Prestwich GD
    Lipids; 1995 Mar; 30(3):231-4. PubMed ID: 7791531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and partial characterization of a cholesterol-requiring mutant of Chinese hamster ovary cells.
    Chang TY; Telakowski C; Heuvel WV; Alberts AW; Vagelos PR
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):832-6. PubMed ID: 265577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 2,3-Epoxy-10-aza-10,11-dihydrosqualene, a high-energy intermediate analogue inhibitor of 2,3-oxidosqualene cyclase.
    Ceruti M; Balliano G; Viola F; Grosa G; Rocco F; Cattel L
    J Med Chem; 1992 Aug; 35(16):3050-8. PubMed ID: 1501233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lanosterol biosynthesis in the prokaryote Methylococcus capsulatus: insight into the evolution of sterol biosynthesis.
    Lamb DC; Jackson CJ; Warrilow AG; Manning NJ; Kelly DE; Kelly SL
    Mol Biol Evol; 2007 Aug; 24(8):1714-21. PubMed ID: 17567593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stereochemically distinct roles for sterol in Saccharomyces cerevisiae.
    Pinto WJ; Lozano R; Sekula BC; Nes WR
    Biochem Biophys Res Commun; 1983 Apr; 112(1):47-54. PubMed ID: 6340686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis of 24,25-epoxycholesterol from squalene 2,3;22,23-dioxide.
    Nelson JA; Steckbeck SR; Spencer TA
    J Biol Chem; 1981 Feb; 256(3):1067-8. PubMed ID: 7451488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitors of cholesterol biosynthesis as potential hypocholesterolemic drugs.
    Viola F; Balliano G; Cattel L
    Ital J Biochem; 1989; 38(4):297A-299A. PubMed ID: 2583986
    [No Abstract]   [Full Text] [Related]  

  • 28. Properties of purified squalene-hopene cyclase from Bacillus acidocaldarius.
    Ochs D; Tappe CH; Gärtner P; Kellner R; Poralla K
    Eur J Biochem; 1990 Nov; 194(1):75-80. PubMed ID: 2253626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro inhibition of animal and higher plants 2,3-oxidosqualene-sterol cyclases by 2-aza-2,3-dihydrosqualene and derivatives, and by other ammonium-containing molecules.
    Duriatti A; Bouvier-Nave P; Benveniste P; Schuber F; Delprino L; Balliano G; Cattel L
    Biochem Pharmacol; 1985 Aug; 34(15):2765-77. PubMed ID: 4015713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of sterol biosynthesis in Saccharomyces cerevisiae and Candida albicans by 22,23-epoxy-2-aza-2,3-dihydrosqualene and the corresponding N-oxide.
    Balliano G; Milla P; Ceruti M; Carrano L; Viola F; Brusa P; Cattel L
    Antimicrob Agents Chemother; 1994 Sep; 38(9):1904-8. PubMed ID: 7810997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-specific lanosterol and hopanoid biosynthesis be a cell-free system from the bacterium Methylococcus capsulatus.
    Rohmer M; Bouvier P; Ourisson G
    Eur J Biochem; 1980 Dec; 112(3):557-60. PubMed ID: 6780348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Supernatant protein factor stimulates HMG-CoA reductase in cell culture and in vitro.
    Mokashi V; Singh DK; Porter TD
    Arch Biochem Biophys; 2005 Jan; 433(2):474-80. PubMed ID: 15581604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and stereoelectronic requirements for the inhibition of mammalian 2,3-oxidosqualene cyclase by substituted isoquinoline derivatives.
    Barth MM; Binet JL; Thomas DM; de Fornel DC; Samreth S; Schuber FJ; Renaut PP
    J Med Chem; 1996 Jun; 39(12):2302-12. PubMed ID: 8691425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification, kinetics, inhibitors and CD for recombinant β-amyrin synthase from Euphorbia tirucalli L and functional analysis of the DCTA motif, which is highly conserved among oxidosqualene cyclases.
    Ito R; Masukawa Y; Hoshino T
    FEBS J; 2013 Mar; 280(5):1267-80. PubMed ID: 23294602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition kinetics and affinity labeling of bacterial squalene:hopene cyclase by thia-substituted analogues of 2, 3-oxidosqualene.
    Zheng YF; Abe I; Prestwich GD
    Biochemistry; 1998 Apr; 37(17):5981-7. PubMed ID: 9558334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Profound insights into squalene cyclization.
    Poralla K
    Chem Biol; 2004 Jan; 11(1):12-4. PubMed ID: 15112988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antifungal activity of bis-azasqualenes, inhibitors of oxidosqualene cyclase.
    Voyron S; Rocco F; Ceruti M; Forni P; Pla AF; Sarpietro MG; Varese GC; Marchisio VF
    Mycoses; 2010 Nov; 53(6):481-7. PubMed ID: 19549106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deletion of the Gly600 residue of Alicyclobacillus acidocaldarius squalene cyclase alters the substrate specificity into that of the eukaryotic-type cyclase specific to (3S)-2,3-oxidosqualene.
    Hoshino T; Shimizu K; Sato T
    Angew Chem Int Ed Engl; 2004 Dec; 43(48):6700-3. PubMed ID: 15593147
    [No Abstract]   [Full Text] [Related]  

  • 39. Inhibition of squalene synthase but not squalene cyclase prevents mevalonate-mediated suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase synthesis at a posttranscriptional level.
    Peffley DM; Gayen AK
    Arch Biochem Biophys; 1997 Jan; 337(2):251-60. PubMed ID: 9016820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 1-methylidenesqualene and 25-methylidenesqualene as active-site probes for bacterial squalene:hopene cyclase.
    Tanaka H; Noguchi H; Abe I
    Org Lett; 2004 Mar; 6(5):803-6. PubMed ID: 14986979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.