These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 28940410)
1. Mechanisms of bone destruction in multiple myeloma. Terpos E; Christoulas D; Gavriatopoulou M; Dimopoulos MA Eur J Cancer Care (Engl); 2017 Nov; 26(6):. PubMed ID: 28940410 [TBL] [Abstract][Full Text] [Related]
2. Bidirectional Notch Signaling and Osteocyte-Derived Factors in the Bone Marrow Microenvironment Promote Tumor Cell Proliferation and Bone Destruction in Multiple Myeloma. Delgado-Calle J; Anderson J; Cregor MD; Hiasa M; Chirgwin JM; Carlesso N; Yoneda T; Mohammad KS; Plotkin LI; Roodman GD; Bellido T Cancer Res; 2016 Mar; 76(5):1089-100. PubMed ID: 26833121 [TBL] [Abstract][Full Text] [Related]
3. Role of the bone marrow microenvironment in multiple myeloma. Roodman GD J Bone Miner Res; 2002 Nov; 17(11):1921-5. PubMed ID: 12412796 [TBL] [Abstract][Full Text] [Related]
4. Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Qiang YW; Chen Y; Stephens O; Brown N; Chen B; Epstein J; Barlogie B; Shaughnessy JD Blood; 2008 Jul; 112(1):196-207. PubMed ID: 18305214 [TBL] [Abstract][Full Text] [Related]
5. Update on the pathogenesis of osteolysis in multiple myeloma patients. Giuliani N; Colla S; Rizzoli V Acta Biomed; 2004 Dec; 75(3):143-52. PubMed ID: 15796087 [TBL] [Abstract][Full Text] [Related]
6. Pathogenesis and management of myeloma bone disease. Christoulas D; Terpos E; Dimopoulos MA Expert Rev Hematol; 2009 Aug; 2(4):385-98. PubMed ID: 21082944 [TBL] [Abstract][Full Text] [Related]
7. Biological aspects of altered bone remodeling in multiple myeloma and possibilities of pharmacological intervention. Kupisiewicz K Dan Med Bull; 2011 May; 58(5):B4277. PubMed ID: 21535989 [TBL] [Abstract][Full Text] [Related]
8. Biology and treatment of myeloma related bone disease. Terpos E; Christoulas D; Gavriatopoulou M Metabolism; 2018 Mar; 80():80-90. PubMed ID: 29175022 [TBL] [Abstract][Full Text] [Related]
9. New insight in the mechanism of osteoclast activation and formation in multiple myeloma: focus on the receptor activator of NF-kappaB ligand (RANKL). Giuliani N; Colla S; Rizzoli V Exp Hematol; 2004 Aug; 32(8):685-91. PubMed ID: 15308315 [TBL] [Abstract][Full Text] [Related]
10. Osteocyte CIITA aggravates osteolytic bone lesions in myeloma. Liu H; He J; Bagheri-Yarmand R; Li Z; Liu R; Wang Z; Bach DH; Huang YH; Lin P; Guise TA; Gagel RF; Yang J Nat Commun; 2022 Jun; 13(1):3684. PubMed ID: 35760800 [TBL] [Abstract][Full Text] [Related]
12. [Bone disease in multiple myeloma and its mechanism]. Abe M Clin Calcium; 2006 Apr; 16(4):565- 71. PubMed ID: 16582506 [TBL] [Abstract][Full Text] [Related]
13. Pathophysiology of multiple myeloma bone disease. Lentzsch S; Ehrlich LA; Roodman GD Hematol Oncol Clin North Am; 2007 Dec; 21(6):1035-49, viii. PubMed ID: 17996587 [TBL] [Abstract][Full Text] [Related]
14. The critical role of interleukin-6, interleukin-1B and macrophage colony-stimulating factor in the pathogenesis of bone lesions in multiple myeloma. Bataille R; Chappard D; Klein B Int J Clin Lab Res; 1992; 21(4):283-7. PubMed ID: 1591381 [TBL] [Abstract][Full Text] [Related]
15. [Mechanisms for formation of myeloma bone disease]. Yata K; Abe M; Matsumoto T Clin Calcium; 2008 Apr; 18(4):438-46. PubMed ID: 18379024 [TBL] [Abstract][Full Text] [Related]
16. Gene silencing of the BDNF/TrkB axis in multiple myeloma blocks bone destruction and tumor burden in vitro and in vivo. Ai LS; Sun CY; Wang YD; Zhang L; Chu ZB; Qin Y; Gao F; Yan H; Guo T; Chen L; Yang D; Hu Y Int J Cancer; 2013 Sep; 133(5):1074-84. PubMed ID: 23420490 [TBL] [Abstract][Full Text] [Related]
17. Pathogenic Mechanisms of Myeloma Bone Disease and Possible Roles for NRF2. Yen CH; Hsu CM; Hsiao SY; Hsiao HH Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32937821 [TBL] [Abstract][Full Text] [Related]
18. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. Heath DJ; Chantry AD; Buckle CH; Coulton L; Shaughnessy JD; Evans HR; Snowden JA; Stover DR; Vanderkerken K; Croucher PI J Bone Miner Res; 2009 Mar; 24(3):425-36. PubMed ID: 19016584 [TBL] [Abstract][Full Text] [Related]
19. Role of Osteocytes in Myeloma Bone Disease: Anti-sclerostin Antibody as New Therapeutic Strategy. Toscani D; Bolzoni M; Ferretti M; Palumbo C; Giuliani N Front Immunol; 2018; 9():2467. PubMed ID: 30410490 [TBL] [Abstract][Full Text] [Related]
20. RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Wittrant Y; Théoleyre S; Chipoy C; Padrines M; Blanchard F; Heymann D; Rédini F Biochim Biophys Acta; 2004 Sep; 1704(2):49-57. PubMed ID: 15363860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]