These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 28940512)
21. Plant growth promotion traits and Cr (VI) reduction potentials of Cr (VI) resistant Streptomyces strains. Javaid M; Sultan S J Basic Microbiol; 2013 May; 53(5):420-8. PubMed ID: 22736528 [TBL] [Abstract][Full Text] [Related]
22. Lindane dissipation in a biomixture: Effect of soil properties and bioaugmentation. Saez JM; Bigliardo AL; Raimondo EE; Briceño GE; Polti MA; Benimeli CS Ecotoxicol Environ Saf; 2018 Jul; 156():97-105. PubMed ID: 29533212 [TBL] [Abstract][Full Text] [Related]
23. Lindane removal by pure and mixed cultures of immobilized actinobacteria. Saez JM; Benimeli CS; Amoroso MJ Chemosphere; 2012 Nov; 89(8):982-7. PubMed ID: 22840534 [TBL] [Abstract][Full Text] [Related]
24. Effect of microbial activity on the mobility of chromium in soils. Desjardin V; Bayard R; Huck N; Manceau A; Gourdon R Waste Manag; 2002; 22(2):195-200. PubMed ID: 12003148 [TBL] [Abstract][Full Text] [Related]
25. Isolation and characterization of a lindane degrading bacteria Paracoccus sp. NITDBR1 and evaluation of its plant growth promoting traits. Sahoo B; Ningthoujam R; Chaudhuri S Int Microbiol; 2019 Mar; 22(1):155-167. PubMed ID: 30810939 [TBL] [Abstract][Full Text] [Related]
26. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium. Hechmi N; Ben Aissa N; Abdennaceur H; Jedidi N Int J Phytoremediation; 2013; 15(7):703-13. PubMed ID: 23819269 [TBL] [Abstract][Full Text] [Related]
27. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
28. Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems. Fuentes MS; Raimondo EE; Amoroso MJ; Benimeli CS Chemosphere; 2017 Apr; 173():359-367. PubMed ID: 28126570 [TBL] [Abstract][Full Text] [Related]
29. Quantitative proteomic and transcriptional analyses reveal degradation pathway of γ-hexachlorocyclohexane and the metabolic context in the actinobacterium Streptomyces sp. M7. Sineli PE; Herrera HM; Cuozzo SA; Dávila Costa JS Chemosphere; 2018 Nov; 211():1025-1034. PubMed ID: 30223317 [TBL] [Abstract][Full Text] [Related]
30. Applied of actinobacteria consortia-based bioremediation to restore co-contaminated systems. Antezana PE; Colin VL; Bourguignon N; Benimeli CS; Fuentes MS Res Microbiol; 2023 May; 174(4):104028. PubMed ID: 36638934 [TBL] [Abstract][Full Text] [Related]
31. Removal of Chromium from Soils Cultivated with Maize (Zea Mays) After the Addition of Natural Minerals as Soil Amendments. Μolla A; Ioannou Z; Mollas S; Skoufogianni E; Dimirkou A Bull Environ Contam Toxicol; 2017 Mar; 98(3):347-352. PubMed ID: 28233031 [TBL] [Abstract][Full Text] [Related]
32. Crop-dependent root-microbe-soil interactions induce contrasting natural attenuation of organochlorine lindane in soils. Feng J; Shentu J; Zhu Y; Tang C; He Y; Xu J Environ Pollut; 2020 Feb; 257():113580. PubMed ID: 31753626 [TBL] [Abstract][Full Text] [Related]
33. Influence of plant root exudates on the mobility of fuel volatile compounds in contaminated soils. Balseiro-Romero M; Kidd PS; Monterroso C Int J Phytoremediation; 2014; 16(7-12):824-39. PubMed ID: 24933887 [TBL] [Abstract][Full Text] [Related]
34. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure. Morales DK; Ocampo W; Zambrano MM J Appl Microbiol; 2007 Dec; 103(6):2704-12. PubMed ID: 18045449 [TBL] [Abstract][Full Text] [Related]
35. Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions. Jeyasingh J; Philip L J Hazard Mater; 2005 Feb; 118(1-3):113-20. PubMed ID: 15721535 [TBL] [Abstract][Full Text] [Related]
36. Phytoextraction and dissipation of lindane by Spinacia oleracea L. Dubey RK; Tripathi V; Singh N; Abhilash PC Ecotoxicol Environ Saf; 2014 Nov; 109():22-6. PubMed ID: 25133347 [TBL] [Abstract][Full Text] [Related]
37. Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. Salam JA; Hatha MAA; Das N J Environ Manage; 2017 May; 193():394-399. PubMed ID: 28259469 [TBL] [Abstract][Full Text] [Related]
38. Comparative bioremediation potential of four rhizospheric microbial species against lindane. Abhilash PC; Srivastava S; Singh N Chemosphere; 2011 Jan; 82(1):56-63. PubMed ID: 21044795 [TBL] [Abstract][Full Text] [Related]
39. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Masood F; Malik A Bull Environ Contam Toxicol; 2011 Jan; 86(1):114-9. PubMed ID: 21181113 [TBL] [Abstract][Full Text] [Related]
40. Effect of available nitrogen on phytoavailability and bioaccumulation of hexavalent and trivalent chromium in hankow willows (Salix matsudana Koidz). Yu XZ; Gu JD Ecotoxicol Environ Saf; 2008 Jun; 70(2):216-22. PubMed ID: 18192014 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]