BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 28940535)

  • 1. Experimental and numerical assessment of hyperthermic laser lipolysis with 1,064 nm Nd:YAG laser on a porcine fatty tissue model.
    Milanic M; Muc BT; Jezersek M; Lukac M
    Lasers Surg Med; 2018 Feb; 50(2):125-136. PubMed ID: 28940535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of thermodynamic bioeffects of long-pulsed 1064 nm laser in the photothermal lipolysis.
    Wu S; Jiang Z; Dong J; Yao M
    Lasers Surg Med; 2024 Jan; 56(1):90-99. PubMed ID: 38018661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Air-Cooled Nd:YAG Laser for the Treatment of the Venous Lakes of the Lips.
    Kong YQ; Dong XX; Wu B; Shu P; Li CX; Bao WW; Zheng XW; Liu J; Cheng ML; Yang YQ; Huang XF
    Photobiomodul Photomed Laser Surg; 2024 Mar; 42(3):230-237. PubMed ID: 38417045
    [No Abstract]   [Full Text] [Related]  

  • 4. Lipolysis using a 980-nm diode laser: a retrospective analysis of 534 procedures.
    Reynaud JP; Skibinski M; Wassmer B; Rochon P; Mordon S
    Aesthetic Plast Surg; 2009 Jan; 33(1):28-36. PubMed ID: 18972152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat dissipation after nonanatomical lung resection using a laser is mainly due to emission to the environment: an experimental ex vivo study.
    Kirschbaum A; Ocker M; Bartsch DK; Quint K
    Lasers Med Sci; 2014 May; 29(3):1037-42. PubMed ID: 24146236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation-guided development of advanced PID control algorithm for skin cooling in radiofrequency lipolysis.
    Wang B; Zang L; Lu Y; Zhan M; Sun T; Zhou Y; Song C
    Biomed Mater Eng; 2024; 35(3):303-321. PubMed ID: 38517766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites.
    Mushaben M; Urie R; Flake T; Jaffe M; Rege K; Heys J
    Lasers Surg Med; 2018 Feb; 50(2):143-152. PubMed ID: 28990678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An endoscopic approach providing near-infrared laser-induced coagulation with accurate depth limits.
    Turker-Burhan M; Ellidokuz EB; Bagriyanik HA; Tozburun S
    J Biophotonics; 2024 Apr; 17(4):e202300377. PubMed ID: 38247032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional radiofrequency tissue tightening: a proposed mechanism and applications for body contouring.
    Paul M; Blugerman G; Kreindel M; Mulholland RS
    Aesthetic Plast Surg; 2011 Feb; 35(1):87-95. PubMed ID: 20835826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of laser dosimetry based on patient-specific anatomical models for the ablation of pancreatic ductal adenocarcinoma tumor.
    Namakshenas P; Di Matteo FM; Bianchi L; Faiella E; Stigliano S; Quero G; Saccomandi P
    Sci Rep; 2023 Jul; 13(1):11053. PubMed ID: 37422486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal eye injuries from dermatologic laser treatments-an experimental study.
    Nguyen L; Seeber N; Schneider SW; Herberger K
    Lasers Med Sci; 2023 Apr; 38(1):110. PubMed ID: 37086295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative Speckle Variance Optical Coherence Tomography for Tissue Temperature Monitoring During Cutaneous Laser Therapy.
    Guo S; Wei S; Lee S; Sheu M; Kang S; Kang JU
    IEEE J Transl Eng Health Med; 2019; 7():1800608. PubMed ID: 32309052
    [No Abstract]   [Full Text] [Related]  

  • 13. Laser induced temperature-jump time resolved IR spectroscopy of zeolites.
    Hawkins AP; Edmeades AE; Hutchison CDM; Towrie M; Howe RF; Greetham GM; Donaldson PM
    Chem Sci; 2024 Mar; 15(10):3453-3465. PubMed ID: 38455000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat transfer analysis and resolution quantification of active dynamic thermography through human skin.
    Prindeze NJ; Mann YVL; Feric TG; Currie TR; Carney BC; Moffatt LT; Loew MH; Shupp JW
    Lasers Surg Med; 2018 Jan; ():. PubMed ID: 29369378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards personalized and versatile monitoring of temperature fields within heterogeneous tissues during laser therapies.
    Kosir J; Vella D; Lukac M; Jezersek M
    Biomed Opt Express; 2021 Jul; 12(7):4530-4543. PubMed ID: 34457430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High energy laser propagation through natural convection of air: a benchmark for validation of numerical simulation.
    Fiordilino J; Sweitzer-Siojo S; Vo T; Mays J; King D
    J Opt Soc Am A Opt Image Sci Vis; 2024 Jun; 41(6):B116-B126. PubMed ID: 38856423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Study of Hyper-Thermic Laser Lipolysis With 1,064 nm Nd:YAG Laser in Human Subjects.
    Milanic M; Muc BT; Lukac N; Lukac M
    Lasers Surg Med; 2019 Dec; 51(10):897-909. PubMed ID: 31228285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the effect of glycerol on increasing the safety and efficiency of hyperthermic laser lipolysis.
    Vahidian A; Momayezan Marnani P; Mehdizadeh A; Rezaeian A; Ostovari M
    Lasers Med Sci; 2024 Mar; 39(1):84. PubMed ID: 38427121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research Hotspots and Emerging Trends of Facial Rejuvenation: A Bibliometric Analysis.
    Mao J; Ri C; Li B; Zhu X; Zhao M
    Aesthetic Plast Surg; 2023 Jun; 47(3):1039-1058. PubMed ID: 36376584
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.