These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 28940783)
1. Time-Resolved In Situ MAS NMR Monitoring of the Nucleation and Growth of Zeolite BEA Catalysts under Hydrothermal Conditions. Ivanova II; Kolyagin YG; Kasyanov IA; Yakimov AV; Bok TO; Zarubin DN Angew Chem Int Ed Engl; 2017 Nov; 56(48):15344-15347. PubMed ID: 28940783 [TBL] [Abstract][Full Text] [Related]
2. Application of Multinuclear MAS NMR for the in situ Monitoring of Hydrothermal Synthesis of Zeolites. Ivanova II; Kolyagin YG Chemistry; 2021 Oct; 27(57):14143-14167. PubMed ID: 34402560 [TBL] [Abstract][Full Text] [Related]
3. Nuclear Magnetic Resonance Spectroscopy for In Situ Monitoring of Porous Materials Formation under Hydrothermal Conditions. Haouas M Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30103562 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of Zr Incorporation in the Course of Hydrothermal Synthesis of Zeolite BEA. Kots PA; Zabilska AV; Khramov EV; Grigoriev YV; Zubavichus YV; Ivanova II Inorg Chem; 2018 Oct; 57(19):11978-11985. PubMed ID: 30204421 [TBL] [Abstract][Full Text] [Related]
5. Local Structures of Two-Dimensional Zeolites-Mordenite and ZSM-5-Probed by Multinuclear NMR. Shelyapina MG; Yocupicio-Gaxiola RI; Zhelezniak IV; Chislov MV; Antúnez-García J; Murrieta-Rico FN; Galván DH; Petranovskii V; Fuentes-Moyado S Molecules; 2020 Oct; 25(20):. PubMed ID: 33066351 [TBL] [Abstract][Full Text] [Related]
6. Metal Active Sites and Their Catalytic Functions in Zeolites: Insights from Solid-State NMR Spectroscopy. Xu J; Wang Q; Deng F Acc Chem Res; 2019 Aug; 52(8):2179-2189. PubMed ID: 31063347 [TBL] [Abstract][Full Text] [Related]
7. Tailoring Hierarchical Zeolites with Designed Cationic Surfactants and Their High Catalytic Performance. Zhang K; Li C; Liu Z; Wang M; Yan X; Xi H Chem Asian J; 2017 Oct; 12(20):2711-2719. PubMed ID: 28815957 [TBL] [Abstract][Full Text] [Related]
8. Broadening the Scope for Fluoride-Free Synthesis of Siliceous Zeolites. Vattipalli V; Paracha AM; Hu W; Chen H; Fan W Angew Chem Int Ed Engl; 2018 Mar; 57(14):3607-3611. PubMed ID: 29377484 [TBL] [Abstract][Full Text] [Related]
9. Structure-Directing Behaviors of Tetraethylammonium Cations toward Zeolite Beta Revealed by the Evolution of Aluminosilicate Species Formed during the Crystallization Process. Ikuno T; Chaikittisilp W; Liu Z; Iida T; Yanaba Y; Yoshikawa T; Kohara S; Wakihara T; Okubo T J Am Chem Soc; 2015 Nov; 137(45):14533-44. PubMed ID: 26509741 [TBL] [Abstract][Full Text] [Related]
10. Direct hydrothermal synthesis of hierarchically porous siliceous zeolite by using alkoxysilylated nonionic surfactant. Mukti RR; Hirahara H; Sugawara A; Shimojima A; Okubo T Langmuir; 2010 Feb; 26(4):2731-5. PubMed ID: 19817366 [TBL] [Abstract][Full Text] [Related]
11. Organic Structure-directing Agent-free Synthesis for *BEA-type Zeolite Membrane. Sakai M; Yasuda N; Tsuzuki Y; Matsukata M J Vis Exp; 2020 Feb; (156):. PubMed ID: 32150153 [TBL] [Abstract][Full Text] [Related]
12. In situ high temperature MAS NMR study of the mechanisms of catalysis. Ethane aromatization on Zn-modified zeolite BEA. Arzumanov SS; Gabrienko AA; Freude D; Stepanov AG Solid State Nucl Magn Reson; 2009 Apr; 35(2):113-9. PubMed ID: 19186034 [TBL] [Abstract][Full Text] [Related]
13. Distribution of aluminum and boron in the periodical building units of boron-containing Beta zeolites. Korányi TI; Nagy JB J Phys Chem B; 2006 Aug; 110(30):14728-35. PubMed ID: 16869580 [TBL] [Abstract][Full Text] [Related]
14. Impact of in situ MAS NMR techniques to the understanding of the mechanisms of zeolite catalyzed reactions. Ivanova II; Kolyagin YG Chem Soc Rev; 2010 Dec; 39(12):5018-50. PubMed ID: 21038049 [TBL] [Abstract][Full Text] [Related]
15. Organic-free synthesis of zincoaluminosilicate zeolites from homogeneous gels prepared by a co-precipitation method. Koike N; Chaikittisilp W; Iyoki K; Yanaba Y; Yoshikawa T; Elangovan SP; Itabashi K; Okubo T Dalton Trans; 2017 Aug; 46(33):10837-10846. PubMed ID: 28762409 [TBL] [Abstract][Full Text] [Related]
16. Role of structural similarity between starting zeolite and product zeolite in the interzeolite conversion process. Honda K; Itakura M; Matsuura Y; Onda A; Ide Y; Sadakane M; Sano T J Nanosci Nanotechnol; 2013 Apr; 13(4):3020-6. PubMed ID: 23763196 [TBL] [Abstract][Full Text] [Related]
17. H/D exchange of molecular hydrogen with Brønsted acid sites of Zn- and Ga-modified zeolite BEA. Gabrienko AA; Arzumanov SS; Toktarev AV; Danilova IG; Freude D; Stepanov AG Phys Chem Chem Phys; 2010 May; 12(19):5149-55. PubMed ID: 20445917 [TBL] [Abstract][Full Text] [Related]
18. Time-resolved observation of the decomposition process of N,N,N-Trimethylanilinium cations on zeolite H-Y by in situ stopped-flow 13C MAS NMR spectroscopy. Wang W; Xu M; Buchholz A; Arnold A; Hunger M Magn Reson Imaging; 2003; 21(3-4):329-32. PubMed ID: 12850727 [TBL] [Abstract][Full Text] [Related]
19. ZSM-5 zeolite nanosheets with improved catalytic activity synthesized using a new class of structure-directing agents. Kore R; Srivastava R; Satpati B Chemistry; 2014 Sep; 20(36):11511-21. PubMed ID: 25056112 [TBL] [Abstract][Full Text] [Related]
20. An Isomorphously Substituted Fe-BEA Zeolite with High Fe Content: Facile Synthesis and Characterization. Naraki Y; Ariga K; Oka H; Kurashige H; Sano T J Nanosci Nanotechnol; 2018 Jan; 18(1):11-19. PubMed ID: 29768805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]