BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 28940802)

  • 1. Asymmetric Reduction of Prochiral Ketones by Using Self-Sufficient Heterogeneous Biocatalysts Based on NADPH-Dependent Ketoreductases.
    Benítez-Mateos AI; San Sebastian E; Ríos-Lombardía N; Morís F; González-Sabín J; López-Gallego F
    Chemistry; 2017 Nov; 23(66):16843-16852. PubMed ID: 28940802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling of Cofactors in Crude Enzyme Hydrogels as Co-immobilized Heterogeneous Biocatalysts for Continuous-Flow Asymmetric Reduction of Ketones.
    Chen Q; Wang Y; Luo G
    ChemSusChem; 2023 Feb; 16(3):e202201654. PubMed ID: 36269055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-immobilized Phosphorylated Cofactors and Enzymes as Self-Sufficient Heterogeneous Biocatalysts for Chemical Processes.
    Velasco-Lozano S; Benítez-Mateos AI; López-Gallego F
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):771-775. PubMed ID: 28000978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using a self-sufficient biocatalyst based on carbonyl reductase and cofactor co-immobilization.
    Zhang XJ; Wang WZ; Zhou R; Liu ZQ; Zheng YG
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):21-31. PubMed ID: 31542820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a cofactor self-sufficient whole-cell biocatalyst for enzymatic asymmetric reduction via engineered metabolic pathways and multi-enzyme cascade.
    Zou S; Zhang B; Han Y; Liu J; Zhao K; Xue Y; Zheng Y
    Biotechnol J; 2024 Mar; 19(3):e2300744. PubMed ID: 38509791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling.
    Chen XH; Wang XT; Lou WY; Li Y; Wu H; Zong MH; Smith TJ; Chen XD
    Microb Cell Fact; 2012 Sep; 11():119. PubMed ID: 22947394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly stereoselective reductions of alpha-alkyl-1,3-diketones and alpha-alkyl-beta-keto esters catalyzed by isolated NADPH-dependent ketoreductases.
    Kalaitzakis D; Rozzell JD; Kambourakis S; Smonou I
    Org Lett; 2005 Oct; 7(22):4799-801. PubMed ID: 16235892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ketoreductase catalyzed stereoselective bioreduction of α-nitro ketones.
    Wang Z; Wu X; Li Z; Huang Z; Chen F
    Org Biomol Chem; 2019 Apr; 17(14):3575-3580. PubMed ID: 30900703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocatalytic strategies for the asymmetric synthesis of alpha-hydroxy ketones.
    Hoyos P; Sinisterra JV; Molinari F; Alcántara AR; Domínguez de María P
    Acc Chem Res; 2010 Feb; 43(2):288-99. PubMed ID: 19908854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candida parapsilosis: A versatile biocatalyst for organic oxidation-reduction reactions.
    Chadha A; Venkataraman S; Preetha R; Padhi SK
    Bioorg Chem; 2016 Oct; 68():187-213. PubMed ID: 27544073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols--part I: processes with isolated enzymes.
    Goldberg K; Schroer K; Lütz S; Liese A
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):237-48. PubMed ID: 17516064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-Immobilization of ADH and GDH on Metal-Organic-Framework: An Effective Biocatalyst for Asymmetric Reduction of Ketones.
    Ran L; Lin Y; Su G; Yang Z; Teng H
    Chembiochem; 2024 Jun; 25(12):e202400147. PubMed ID: 38629211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols-part II: whole-cell reductions.
    Goldberg K; Schroer K; Lütz S; Liese A
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):249-55. PubMed ID: 17486338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example.
    Katzberg M; Skorupa-Parachin N; Gorwa-Grauslund MF; Bertau M
    Int J Mol Sci; 2010 Apr; 11(4):1735-58. PubMed ID: 20480039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel carbonyl reductase with anti-Prelog stereospecificity from Acetobacter sp. CCTCC M209061: purification and characterization.
    Chen XH; Wei P; Wang XT; Zong MH; Lou WY
    PLoS One; 2014; 9(4):e94543. PubMed ID: 24740089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-Continuous Flow Biocatalysis with Affinity Co-Immobilized Ketoreductase and Glucose Dehydrogenase.
    Plž M; Petrovičová T; Rebroš M
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Stereoselective Reduction of Prochiral Ketones by using an F
    Martin C; Tjallinks G; Trajkovic M; Fraaije MW
    Chembiochem; 2021 Jan; 22(1):156-159. PubMed ID: 32935896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols.
    Kroutil W; Mang H; Edegger K; Faber K
    Curr Opin Chem Biol; 2004 Apr; 8(2):120-6. PubMed ID: 15062771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective reduction of prochiral ketones by engineered bifunctional fusion proteins.
    Hölsch K; Weuster-Botz D
    Biotechnol Appl Biochem; 2010 Aug; 56(4):131-40. PubMed ID: 20590527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum.
    Dudzik A; Snoch W; Borowiecki P; Opalinska-Piskorz J; Witko M; Heider J; Szaleniec M
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5055-69. PubMed ID: 25549618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.