These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28941038)

  • 1. Switchable Hydrolase Based on Reversible Formation of Supramolecular Catalytic Site Using a Self-Assembling Peptide.
    Zhang C; Shafi R; Lampel A; MacPherson D; Pappas CG; Narang V; Wang T; Maldarelli C; Ulijn RV
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14511-14515. PubMed ID: 28941038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular assemblies of histidine-containing peptides with switchable hydrolase and peroxidase activities through Cu(II) binding and co-assembling.
    Zhang Y; Tian X; Li X
    J Mater Chem B; 2022 May; 10(19):3716-3722. PubMed ID: 35451448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switchable enzyme mimics based on self-assembled peptides for polyethylene terephthalate degradation.
    Li X; Zhou Y; Lu Z; Shan R; Sun D; Li J; Li P
    J Colloid Interface Sci; 2023 Sep; 646():198-208. PubMed ID: 37196493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A supramolecular approach to construct a hydrolase mimic with photo-switchable catalytic activity.
    Zhao Y; Lei B; Wang M; Wu S; Qi W; Su R; He Z
    J Mater Chem B; 2018 Apr; 6(16):2444-2449. PubMed ID: 32254461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of a reversible pH-responsive switch for peptide self-assembly.
    Zimenkov Y; Dublin SN; Ni R; Tu RS; Breedveld V; Apkarian RP; Conticello VP
    J Am Chem Soc; 2006 May; 128(21):6770-1. PubMed ID: 16719440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterochiral tetrapeptide self-assembly into hydrogel biomaterials for hydrolase mimicry.
    Kurbasic M; Garcia AM; Viada S; Marchesan S
    J Pept Sci; 2022 Jan; 28(1):e3304. PubMed ID: 33521995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the Activity of Peptide-Based Artificial Hydrolase with Catalytic Ser/His/Asp Triad and Molecular Imprinting.
    Wang M; Lv Y; Liu X; Qi W; Su R; He Z
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14133-41. PubMed ID: 27191381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A remote optically controlled hydrolase model based on supramolecular assembly and disassembly of its enzyme-like active site.
    Ma N; Li F; Li S; Chu S; Han L; Liu S; Yan T; Tian R; Luo Q; Liu J
    Nanoscale; 2019 Feb; 11(8):3521-3526. PubMed ID: 30742173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doubling the cross-linking interface of a rationally designed beta roll peptide for calcium-dependent proteinaceous hydrogel formation.
    Dooley K; Bulutoglu B; Banta S
    Biomacromolecules; 2014 Oct; 15(10):3617-24. PubMed ID: 25226243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The acid-base-nucleophile catalytic triad in ABH-fold enzymes is coordinated by a set of structural elements.
    Denesyuk A; Dimitriou PS; Johnson MS; Nakayama T; Denessiouk K
    PLoS One; 2020; 15(2):e0229376. PubMed ID: 32084230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conjugating Catalytic Polyproline Fragments with a Self-Assembling Peptide Produces Efficient Artificial Hydrolases.
    Huang KY; Yu CC; Horng JC
    Biomacromolecules; 2020 Mar; 21(3):1195-1201. PubMed ID: 31951389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide.
    Pochan DJ; Schneider JP; Kretsinger J; Ozbas B; Rajagopal K; Haines L
    J Am Chem Soc; 2003 Oct; 125(39):11802-3. PubMed ID: 14505386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymorphic Self-Organization of Lauroyl Peptide in Response to pH and Concentration.
    Novelli F; Strofaldi A; De Santis S; Del Giudice A; Casciardi S; Galantini L; Morosetti S; Pavel NV; Masci G; Scipioni A
    Langmuir; 2020 Apr; 36(14):3941-3951. PubMed ID: 32118446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimuli responsive fibrous hydrogels from hierarchical self-assembly of a triblock copolypeptide.
    Popescu MT; Liontos G; Avgeropoulos A; Tsitsilianis C
    Soft Matter; 2015 Jan; 11(2):331-42. PubMed ID: 25379651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically engineered block copolymers: influence of the length and structure of the coiled-coil blocks on hydrogel self-assembly.
    Xu C; Kopecek J
    Pharm Res; 2008 Mar; 25(3):674-82. PubMed ID: 17713844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of copper (II) ion to an Alzheimer's tau peptide as revealed by MALDI-TOF MS, CD, and NMR.
    Ma QF; Li YM; Du JT; Kanazawa K; Nemoto T; Nakanishi H; Zhao YF
    Biopolymers; 2005 Oct; 79(2):74-85. PubMed ID: 15986501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial hydrolase based on carbon nanotubes conjugated with peptides.
    Zhang Q; He X; Han A; Tu Q; Fang G; Liu J; Wang S; Li H
    Nanoscale; 2016 Sep; 8(38):16851-16856. PubMed ID: 27714071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a selective metal ion switch for self-assembly of peptide-based fibrils.
    Dublin SN; Conticello VP
    J Am Chem Soc; 2008 Jan; 130(1):49-51. PubMed ID: 18067302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a reversible inversed pH-responsive caged protein.
    Peng T; Lee H; Lim S
    Biomater Sci; 2015 Apr; 3(4):627-35. PubMed ID: 26222423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.