BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 28941234)

  • 1. Tuning the Size of Poly(lactic-co-glycolic Acid) (PLGA) Nanoparticles Fabricated by Nanoprecipitation.
    Huang W; Zhang C
    Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 28941234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colon-targeted delivery of cyclosporine A using dual-functional Eudragit
    Naeem M; Bae J; Oshi MA; Kim MS; Moon HR; Lee BL; Im E; Jung Y; Yoo JW
    Int J Nanomedicine; 2018; 13():1225-1240. PubMed ID: 29535519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized formulation of high-payload PLGA nanoparticles containing insulin-lauryl sulfate complex.
    Shi K; Cui F; Yamamoto H; Kawashima Y
    Drug Dev Ind Pharm; 2009 Feb; 35(2):177-84. PubMed ID: 19016099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content.
    Budhian A; Siegel SJ; Winey KI
    Int J Pharm; 2007 May; 336(2):367-75. PubMed ID: 17207944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles.
    Niu X; Zou W; Liu C; Zhang N; Fu C
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1375-83. PubMed ID: 19832638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of superparamagnetic iron oxide/doxorubicin co-loaded poly (lactic-co-glycolic acid) nanospheres prepared by different emulsion solvent evaporation methods.
    Mosafer J; Teymouri M
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1146-1155. PubMed ID: 28789586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method.
    Kashi TS; Eskandarion S; Esfandyari-Manesh M; Marashi SM; Samadi N; Fatemi SM; Atyabi F; Eshraghi S; Dinarvand R
    Int J Nanomedicine; 2012; 7():221-34. PubMed ID: 22275837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro release characteristics and cellular uptake of poly(D,L-lactic-co-glycolic acid) nanoparticles for topical delivery of antisense oligodeoxynucleotides.
    Chen YS; Alany RG; Young SA; Green CR; Rupenthal ID
    Drug Deliv; 2011; 18(7):493-501. PubMed ID: 21696294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review on Designing Poly (Lactic-co-glycolic Acid) Nanoparticles as Drug Delivery Systems.
    Naskar S; Das SK; Sharma S; Kuotsu K
    Pharm Nanotechnol; 2021; 9(1):36-50. PubMed ID: 33319695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles.
    Chiesa E; Dorati R; Modena T; Conti B; Genta I
    Int J Pharm; 2018 Jan; 536(1):165-177. PubMed ID: 29175645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of parameters for preparation of docetaxel-loaded PLGA nanoparticles by nanoprecipitation method.
    Shi W; Zhang ZJ; Yuan Y; Xing EM; Qin Y; Peng ZJ; Zhang ZP; Yang KY
    J Huazhong Univ Sci Technolog Med Sci; 2013 Oct; 33(5):754-758. PubMed ID: 24142732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and optimization of NSAID loaded nanoparticles.
    Sashmal S; Mukherjee S; Ray S; Thakur RS; Ghosh LK; Gupta BK
    Pak J Pharm Sci; 2007 Apr; 20(2):157-62. PubMed ID: 17416573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques.
    Wang H; Zhang G; Ma X; Liu Y; Feng J; Park K; Wang W
    Eur J Pharm Biopharm; 2017 Jun; 115():177-185. PubMed ID: 28263795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(D,L-lactic-co-glycolic acid)-based artesunate nanoparticles: formulation, antimalarial and toxicity assessments.
    Dauda K; Busari Z; Morenikeji O; Afolayan F; Oyeyemi O; Meena J; Sahu D; Panda A
    J Zhejiang Univ Sci B; 2017 Nov.; 18(11):977-985. PubMed ID: 29119735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices.
    Ekanem EE; Nabavi SA; Vladisavljević GT; Gu S
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23132-43. PubMed ID: 26423218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method.
    Murakami H; Kobayashi M; Takeuchi H; Kawashima Y
    Int J Pharm; 1999 Oct; 187(2):143-52. PubMed ID: 10502620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability-limit "Ouzo region" boundaries for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation.
    Beck-Broichsitter M
    Int J Pharm; 2016 Sep; 511(1):262-266. PubMed ID: 27418569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafine PEG-coated poly(lactic-co-glycolic acid) nanoparticles formulated by hydrophobic surfactant-assisted one-pot synthesis for biomedical applications.
    Chu CH; Wang YC; Huang HY; Wu LC; Yang CS
    Nanotechnology; 2011 May; 22(18):185601. PubMed ID: 21415469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of PLGA nanoparticles.
    Astete CE; Sabliov CM
    J Biomater Sci Polym Ed; 2006; 17(3):247-89. PubMed ID: 16689015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional nanovehicles for combined 5-fluorouracil and gold nanoparticles based on the nanoprecipitation method.
    Karmi A; Husseini GA; Faroun M; Sowwan M
    J Nanosci Nanotechnol; 2011 Jun; 11(6):4675-83. PubMed ID: 21770092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.